【EMNLP 2021】SimCSE:句子嵌入的简单对比学习 && 【CVPR 2021】理解对比学习损失函数及温度系数

本文介绍了SimCSE,一种无监督学习的句子嵌入对比学习方法,通过Transformer模型的dropout实现。讨论了对比学习损失函数的性质,特别是温度系数如何影响对困难负样本的关注度。实验表明SimCSE在多个数据集上的表现优于其他方法,并提供了其实现和有监督训练的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重磅推荐专栏:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

1. 介绍

SimCSE(Simple Contrastive Learning of Sentence Embeddings)是一种简单在没有监督训练数据的情况下训练句子向量的对比学习方法。

这个方法是对同一个句子进行两次编码。由于在 Transformer 模型中使用了 dropout,两个句子表征的位置将略有不同。这两个表征之间的距离将被最小化,而同一批中其他句子的其他表征的距离将被最大化(它们作为反例):
在这里插入图片描述

  • 目标函数 Multiple Negatives Ranking Loss:
    在这里插入图片描述
    其中,z和z’ 是两个不同的dropout随机掩码。 h i z i , h i z i ′ h_i^{z_i},h_i^{z'_i} hizi,hiz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小爷毛毛(卓寿杰)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值