本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展
一、技术背景与核心思想
随着大语言模型(LLM)在复杂推理任务中的广泛应用,Chain-of-Thought(CoT)已成为主流范式。然而,CoT的冗长中间步骤导致:
• ⚠️ 高昂计算成本($0.10/1000 tokens)
• ⏳ 显著推理延迟(200+ tokens = 3s+)
• 🤖 与人类高效认知模式脱节
Chain of Draft(CoD) 的突破性在于:
“人类用精简草稿(≤5词/步)代替冗长推理,仅记录关键计算/转换节点