【Spark Mllib】决策树,随机森林——预测森林植被类型

重磅推荐专栏:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

数据集处理

import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression._
val rawData = sc.textFile("covtype.data")
val data = rawData.map{
   
   	
	line =>
	val values = line.split(",").map( _.toDouble)
	//init返回除最后一个值外的所有值
	val featureVector = Vectors.dense(values.init)
	//决策树要求label从0开始
	val label = values.last -1
	LabeledPoint( label,featureVector)
}

val Array(trainData,cvData,testData) = data.randomSplit( Array(0.8,0.1,0.1))
trainData.cache() 
cvData.cache() //交叉检验集
testData.cache()

#模型训练

import org.apache.spark.mllib.tree._
import org.apache.spark.mllib.tree.model._
import org.apache.spark.rdd._

def getMetrics(model: DecisionTreeModel,dta: RDD[ LabeledPoint ]):
	MulticlassMetrics = {
   
   
		val predictionsAndLabels = data.map( example =>
		( 
			model.predict( example.features), example.label)
		)
		new MulticlassMetrics( predictionsAndLabels)
	}


val model = Decision
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小爷毛毛(卓寿杰)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值