【GigaGAN论文总结】Scaling up GANs for Text-to-Image Synthesis
1、论点
因为扩散和自回归模型的训练目标简单,稳定等特点。现在超大模型、数据和计算资源现在都用于扩散和自回归模型。作者在这篇工作中探讨——GANs是否可以继续扩大规模并可能从这些资源中获益,或者它们已经停滞不前了?是什么阻止了它们进一步扩展,我们能否克服这些障碍?
模型 | 优点 | 缺点 |
---|---|---|
扩散模型 | 1.训练目标简单 2.训练稳定 |
1.计算成本高 2.慢 3.慢从而导致交互性差 |
GAN | 1.高效 2.擅长于建模单个或多个对象类 |
1.训练过程不稳定 2.多样性较差的缺点使得GANs难以扩展并应用于新的域。 |
自回归模型 | 1.训练目标简单 2.训练稳定 |
1.计 |