【GigaGAN论文总结】Scaling up GANs for Text-to-Image Synthesis

本文介绍了GigaGAN,一个拥有十亿参数的文本到图像生成模型,挑战扩散模型和自回归模型在大规模数据集上的主导地位。GigaGAN展示了GAN在生成速度、高分辨率图像和风格混合方面的优势。通过sample-adaptive kernel selection、注意力与卷积的交错以及多尺度鉴别器设计等创新,GigaGAN提高了生成质量,证明了大规模GAN在文本条件生成中的可行性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文在这:https://blog.csdn.net/qq_45934285/article/details/130614710?spm=1001.2014.3001.5501

1、论点

因为扩散和自回归模型的训练目标简单,稳定等特点。现在超大模型、数据和计算资源现在都用于扩散和自回归模型。作者在这篇工作中探讨——GANs是否可以继续扩大规模并可能从这些资源中获益,或者它们已经停滞不前了?是什么阻止了它们进一步扩展,我们能否克服这些障碍?

模型 优点 缺点
扩散模型 1.训练目标简单
2.训练稳定
1.计算成本高
2.慢
3.慢从而导致交互性差
GAN 1.高效
2.擅长于建模单个或多个对象类
1.训练过程不稳定
2.多样性较差的缺点使得GANs难以扩展并应用于新的域。
自回归模型 1.训练目标简单
2.训练稳定
1.计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值