DeepStream系列之yolov4使用

本文介绍了如何在DeepStream 5.0中使用YOLOv4进行对象检测,包括模型的准备、代码编译、配置文件修改和自定义模型的集成。在模型转换过程中,需要注意PyTorch版本、显存限制和TensorRT工具的使用。最后,展示了在DeepStream中运行YOLOv4的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击查看系列文章目录

0 背景

deepstream 5.0 GA 版本的 SDK 中包含有 yolov3 的检测,还没有正式加上 yolov4 的功能,不过 nvidia 官方也在 github 上发布了相关的代码,本文对使用方法做一个介绍

官方介绍:DeepStream SDK FAQ - #8 by ersheng - DeepStream SDK - NVIDIA Developer Forums

1 模型准备

官方没有提供转换后的模型,需要我们自己转换

git clone https://github.com/Tianxiaomo/pytorch-YOLOv4.git
cd pytorch-YOLOv4

建议创建 conda 环境来安装部署相关软件


                
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗而研之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值