DeepStream系列之Triton部署模型

本文介绍了如何在Jetson平台上使用DeepStream结合Triton Server部署TensorFlow模型,包括Triton的优势、Jetson环境准备、模型部署步骤和后处理。通过DeepStream-app配置文件,利用nvinferserver插件实现模型推理,并自定义后处理功能。文章以ssd_mobilenet_v1和faster_rcnn_inception_v2为例,详述了从模型准备到运行的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击查看系列文章目录

0 背景

deepstream 官方文档介绍,支持与 Triton Server 对接,把 nvinfer 的部分放到 triton 上来实现,即 nvinferserver,那么这种方式可以解决什么问题呢?

首先,triton server 支持更多种类的模型,如 pytorch、tensorflow、tensorrt 等,而 nvinfer 只专注于做 tensorrt 模型的集成,这对于模型的开发调试有利;但是如果在实际生产环境中,还是建议使用 nvinfer 插件,因为这种方式更高效,对内存、显存等利用率高,速度更快些。总之,deepstream 结合 triton 具备以下特点:

  • 支持更多格式的模型,在 T4 和 Jetson 平台上都支持 tensorrt、tensorflow graphdef and savedmodel、tensorflow-tensorrt model,而 T4 还支持 onnx、pytorch、caffe2 netdef格式
  • 支持单张 GPU 上运行多个模型,或者说相同模型的多个实例(多个版本)

本文对 deepstream 与 triton 的结合部署方法做一个介绍。

官方教程:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗而研之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值