DeepStream系列之rtmpsink功能

本文介绍了如何在DeepStream SDK中实现rtmp输出功能,通过源码修改及命令行测试在jetson和dgpu平台上推流,并提供rtmpserver的搭建和拉流测试方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击查看系列文章目录

0 背景

在用 deepstream 开发过程中,会遇到需要输出 rtmp 视频流的需求,实现在网页端播放,截止到 6.1 版本,sdk 还不支持 rtmp 输出,需要我们对源码进行一些修改。本文对实现方法做一个介绍。

1 rtmp server

首先需要搭建一个本地的 rtmpserver,用来接收以及播放我们推的码流。 

在《opencv读取rtsp图像处理后推流rtmp》中我们介绍过使用 Nginx 进行服务搭建,可以参考。

本文我们测试另一个国产化的服务平台 srs(Simple Realtime Server

首先下载源码安装

git clone -b 4.0release https://gitee.com
deepstream是一款用于实时视频分析和流媒体处理的平台,针对不同的应用场景,可以采用不同的模型进行目标检测和跟踪。Yolov5是一种先进的目标检测算法,可以快速准确地识别图像中的多个目标。在deepstream中调用Yolov5模型,可以实现实时的目标检测功能。 要在deepstream中调用Yolov5模型,首先需要将Yolov5模型集成到deepstream框架中。可以按照deepstream提供的开发文档,将Yolov5模型进行编译和配置,然后将生成的模型文件放置在合适的位置。 接下来,在deepstream的配置文件中,指定使用Yolov5模型进行目标检测。需要设置模型的路径、输入的参数和输出的结果等。还可以根据实际需要,调整模型的超参数和阈值,以达到更好的检测效果。 在程序运行时,deepstream会基于配置文件加载Yolov5模型,并实时从视频流中获取图像进行目标检测。检测到的目标将带有标签和边界框的形式呈现在视频中。可以将检测到的目标信息输出到显示设备或者其他处理模块,例如跟踪模块。 Yolov5的调用过程是高度优化的,可以在较低的延迟下实现高效的目标检测。它还支持多种硬件加速方式,如GPU加速和TensorRT引擎,进一步提升检测速度和性能。 总之,通过在deepstream中调用Yolov5模型可以实现快速准确的目标检测功能,为实时视频分析和流媒体处理提供了重要支持。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗而研之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值