DeepStream系列之kafka IoT功能实现

本文介绍了如何使用DeepStream的nvmsgconv和nvmsgbroker插件将检测结果通过Kafka协议发送到服务端,实现物联网功能。详细讲解了从环境准备、服务创建到数据产生的整个过程,并提供了两种运行方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击查看系列文章目录

0 背景

从 deepstream3.0 开始,提供了 nvmsgconv 与 nvmsgbroker 两个插件,可以实现将检测结果通过多种协议,如 kafka、amqp、azure 等发送到服务端,实现一个物联网功能。本文以 deepstream-test4,介绍该功能的具体实现方法。

测试环境:x86 GPU T4, docker deepstream-6.1

1 插件介绍

首先,deepstream-test4 实现的 pipeline 如下所示(点击可放大)

可以看到,在输出部分有两个分支,一个分支是在屏幕进行显示,另一个分支通过 msgconv 和 msgbroker 两个插件进行数据上报。首先对这两个插件的功能进行一个简单的介绍。

1.1 nvmsgconv

插件地址:

### DeepStreamKafka集成概述 为了实现DeepStreamKafka之间的高效协作,通常会利用GStreamer插件来完成视频流或其他媒体数据的传输。具体而言,可以采用`kafkasink`和`kafkasrc`这两个GStreamer插件来进行消息发送和接收操作[^1]。 对于想要基于NVIDIA Jetson平台开发的应用场景来说,在完成了JetPack刷机之后,默认情况下DeepStream已经被预装到了设备上,并位于特定路径之中。因此开发者可以直接在此基础上添加必要的组件支持,比如通过安装额外依赖项使得能够访问Apache Kafka集群并与其交互。 ### 实现方案 #### 安装必要软件包 确保环境中已具备如下条件: - 已经部署好可用版本的Apache Kafka服务实例; - 在目标机器上配置好了相应的网络连接参数以便于同远端Broker通信; 接着可以通过命令行工具apt-get或者pip等方式获取所需的Python客户端库以及C++ SDK接口文件等资源用于后续编码工作之前准备阶段的操作环境搭建过程[^2]。 ```bash sudo apt-get install librdkafka-dev python3-pip pip3 install confluent-kafka ``` #### 修改Pipeline定义脚本 在实际项目里边,则需按照官方文档指导修改gstreamer pipeline描述字符串从而引入新的source/sink element节点对象作为桥梁连接两个不同技术栈所构成的整体解决方案架构图的一部分内容设计思路表达方式之一。 下面给出了一段简单的Python代码片段用来展示怎样创建一个包含有kafka source元素在内的基本pipeline结构形式: ```python import gi gi.require_version('Gst', '1.0') from gi.repository import Gst, GObject import sys def main(args): # Initialize GStreamer Gst.init(None) # Create Pipeline elements pipeline = Gst.parse_launch( "kafkasrc topic=your_topic brokers=localhost:9092 ! h264parse ! nvv4l2decoder ! nvegltransform ! nveglglessink" ) # Start playing the pipeline pipeline.set_state(Gst.State.PLAYING) try: loop = GObject.MainLoop() loop.run() except Exception as e: print(e) # Clean up pipeline.set_state(Gst.State.NULL) if __name__ == "__main__": sys.exit(main(sys.argv)) ``` 此示例展示了如何设置从Kafka主题读取H.264编码格式的数据帧序列并通过解码显示出来这样一个简单流程逻辑关系说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗而研之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值