DeepStream系列之yolov7部署测试

本文介绍了如何在DeepStream 6.1.1环境下,通过Docker安装设置,将Yolov7模型转换为ONNX,并进一步转换成TensorRT模型。详细步骤包括Yolov7环境的conda虚拟环境搭建,模型转换,以及在DeepStream中使用自定义后处理插件NvDsInferParseCustomEfficientNMS进行解析。最后,通过修改配置文件实现了模型的运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击查看系列文章目录

0 背景

测试环境:deepstream 6.1.1,yolov7,T4

1 环境安装

1.1 deepstream 安装

参考《DeepStream系列之6.1版本安装及测试》安装最新版的 deepstream,这里采用的是 docker 方式安装。

1.2 yolov7 安装

安装配置 yolov7 环境的目的是为了生成 onnx 中间模型,onnx 转 tensorrt 的过程需要在容器当中实现

为了避免环境干扰,我们创建一个 conda 虚拟环境

conda create -n yolov7
conda activate yolov7

下载源码 

git clone https://github.com/WongKinYiu/yolov7.git
cd yolov7
pi
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗而研之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值