一文搞懂YOLO系列目标检测!万字长文(附YOLOv8实操教程)

目录

  1. 引言
  2. YOLO系列算法概述
    • 2.1 YOLOv1
    • 2.2 YOLOv2
    • 2.3 YOLOv3
    • 2.4 YOLOv4
    • 2.5 YOLOv5
    • 2.6 YOLOv6
    • 2.7 YOLOv7
    • 2.8 YOLOv8
  3. YOLO算法的基本原理
  4. YOLO系列网络架构
  5. 数据集与训练方式
  6. YOLOv8实操教程
    • 6.1 环境准备
    • 6.2 下载YOLOv8模型
    • 6.3 实现YOLOv8目标检测
    • 6.4 训练YOLOv8模型
    • 6.5 测试与评估
  7. 总结与未来展望

1. 引言

YOLO(You Only Look Once)系列算法是计算机视觉领域中重要的目标检测技术。凭借其高效的实时处理能力,YOLO被广泛应用于视频监控、自动驾驶等多个领域。本文将深入探讨YOLO系列算法的发展历程、网络架构、数据集训练方法,并提供YOLOv8的实操教程,帮助读者全面理解YOLO目标检测。

2. YOLO系列算法概述

2.1 YOLOv1

YOLOv1是YOLO系列的起源,提出了一种全新的检测思路。其核心是将目标检测转化为回归问题,通过单一神经网络直接从图像像素预测物体类别和边界框。

2.2 YOLOv2

YOLOv2在YOLOv1的基础上进行了改进,引入了Anchor

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只蜗牛儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值