目录
- 引言
- YOLO系列算法概述
- 2.1 YOLOv1
- 2.2 YOLOv2
- 2.3 YOLOv3
- 2.4 YOLOv4
- 2.5 YOLOv5
- 2.6 YOLOv6
- 2.7 YOLOv7
- 2.8 YOLOv8
- YOLO算法的基本原理
- YOLO系列网络架构
- 数据集与训练方式
- YOLOv8实操教程
- 6.1 环境准备
- 6.2 下载YOLOv8模型
- 6.3 实现YOLOv8目标检测
- 6.4 训练YOLOv8模型
- 6.5 测试与评估
- 总结与未来展望
1. 引言
YOLO(You Only Look Once)系列算法是计算机视觉领域中重要的目标检测技术。凭借其高效的实时处理能力,YOLO被广泛应用于视频监控、自动驾驶等多个领域。本文将深入探讨YOLO系列算法的发展历程、网络架构、数据集训练方法,并提供YOLOv8的实操教程,帮助读者全面理解YOLO目标检测。
2. YOLO系列算法概述
2.1 YOLOv1
YOLOv1是YOLO系列的起源,提出了一种全新的检测思路。其核心是将目标检测转化为回归问题,通过单一神经网络直接从图像像素预测物体类别和边界框。
2.2 YOLOv2
YOLOv2在YOLOv1的基础上进行了改进,引入了Anchor