朴素贝叶斯分类器及Python手写实现

朴素贝叶斯分类器(Naive Bayes Classifier)是一种简单且高效的分类算法,基于贝叶斯定理并假设特征之间相互独立。在许多实际问题中,尤其是在文本分类、垃圾邮件过滤和情感分析等领域,朴素贝叶斯分类器因其计算效率高和易于实现而广泛应用。

1. 贝叶斯定理

贝叶斯定理描述了在已知某些事件的条件下,如何更新事件的概率。其公式如下:

[
P(C|X) = \frac{P(X|C) \cdot P©}{P(X)}
]

  • (P(C|X)) 是在已知特征 (X) 的情况下,属于类 (C) 的后验概率。
  • (P(X|C)) 是在类 (C) 条件下,特征 (X) 的似然性。
  • (P©) 是类 © 的先验概率。
  • (P(X)) 是特征 (X) 的边际概率。

朴素贝叶斯的核心假设:

  1. 特征之间是条件独立的。
  2. 每个特征都与目标变量独立,且各自的分布是已知的(通常是高斯分布、伯努利分布或多项式分布,取决于特征类型)。

2. 朴素贝叶斯分类器类型

  • 高斯朴素贝叶斯(Gaussian Naive Bayes):适用于连续特征,假设数据符合高斯分布。
  • 多项式朴素贝叶斯(Multinomial Naive Bayes):适用于离散特征,常用于文本分类(如词频)。
  • 伯努利朴素贝叶斯(Bernoulli Naive Bayes):适用于二值特征,通常在文本数据中用于表示单词是否出现。

3. 朴素贝叶斯分类器的工作原理

假设我们的目标是预测一个数据点 (X = [x_1, x_2, …, x_n]) 属于某个类别 (C)。朴素贝叶斯分类器通过计算每个类别 (C) 的后验概率 (P(C|X)),选择具有最大后验概率的类别:

[
P(C|X) = \frac{P(X|C) \cdot P©}{P(X)}
]

通过特征独立性假设,我们可以将 (P(X|C)) 分解为:

[
P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot … \cdot P(x_n|C)
]

最终,朴素贝叶斯分类器选择概率最大的类别 (C) 作为预测结果。

4. Python 手写朴素贝叶斯分类器

接下来我们通过一个具体的示例来手写实现一个朴素贝叶斯分类器。我们将使用 高斯朴素贝叶斯,适用于连续特征。

4.1 数据预处理

首先,准备一些简单的示例数据,并进行预处理。

import numpy as np
import pandas as pd

# 示例数据:四个样本,两个特征,两个类别
data = {
   
   
    'feature_1': [1.2, 1.9, 3.1, 3.5],
    'feature_2': [2.2, 2.8, 3.8, 3.9],
    'label': [0, 0, 1, 1]  # 类别 0 和 1
}

df = pd<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只蜗牛儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值