💐The Begin💐点点关注,收藏不迷路💐
|
在 N*N 的棋盘上放置 N 个皇后(n<=10)而彼此不受攻击(即在棋盘的任一行,任一列和任一对角线上不能放置 2 个皇后),编程求解所有的摆放方法。
输入
输入:n
输出
每行输出一种方案,每种方案顺序输出皇后所在的列号,各个数占5个字符。若无方案,则输出
no solute!
样例输入
4
样例输出
2 4 1 3
3 1 4 2
C语言实现
#include <stdio.h>
#include <math.h>
#define MAX_N 10 // 定义棋盘最大尺寸
int n; // 棋盘大小
int queen[MAX_N]; // 用于记录每行皇后放置的列位置
// 检查当前位置是否可以放置皇后
int is_safe(int row, int col) {
for (int i = 0; i < row; i++) {
// 检查列冲突
if (queen[i] == col) return 0;
// 检查对角线冲突(主对角线和副对角线)
if (abs(row - i) == abs(col - queen[i])) return 0;
}
return 1;
}
// 深度优先搜索函数,用于放置皇后
void dfs(int row) {
if (row == n) { // 如果已经成功放置了n个皇后,输出一种方案
for (int i = 0; i < n; i++) {
printf(“%5d”, queen[i] + 1); // 输出皇后所在列号,从1开始计数所以加1
}
printf(“\n”);
return;
}
for (int col = 0; col < n; col++) { // 尝试在当前行的每一列放置皇后
if (is_safe(row, col)) {
queen[row] = col;
dfs(row + 1);
queen[row] = -1; // 回溯,撤销当前位置的皇后放置
}
}
}
int main() {
scanf(“%d”, &n); // 输入棋盘大小
for (int i = 0; i < n; i++) {
queen[i] = -1; // 初始化皇后位置为无效值
}
if (n < 4) {
printf(“no solute!\n”);
} else {
dfs(0); // 从第0行开始深度优先搜索放置皇后
}
return 0;
}
C++实现
#include <iostream
>
#include <iomanip
>
#include <cmath
>
using namespace std;
const int MAX_N = 10; // 定义棋盘最大尺寸
int n; // 棋盘大小
int queen[MAX_N]; // 用于记录每行皇后放置的列位置
// 检查当前位置是否可以放置皇后
bool is_safe(int row, int col) {
for (int i = 0; i < row; i++) {
// 检查列冲突
if (queen[i] == col) return false;
// 检查对角线冲突(主对角线和副对角线)
if (abs(row - i) == abs(col - queen[i])) return false;
}
return true;
}
// 深度优先搜索函数,用于放置皇后
void dfs(int row) {
if (row == n) { // 如果已经成功放置了n个皇后,输出一种方案
for (int i = 0; i < n; i++) {
cout << setw(5) << queen[i] + 1; // 输出皇后所在列号,从1开始计数所以加1
}
cout << endl;
return;
}
for (int col = 0; col < n; col++) { // 尝试在当前行的每一列放置皇后
if (is_safe(row, col)) {
queen[row] = col;
dfs(row + 1);
queen[row] = -1; // 回溯,撤销当前位置的皇后放置
}
}
}
int main() {
cin >> n; // 输入棋盘大小
for (int i = 0; i < n; i++) {
queen[i] = -1; // 初始化皇后位置为无效值
}
if (n < 4) {
cout << “no solute!” << endl;
} else {
dfs(0); // 从第0行开始深度优先搜索放置皇后
}
return 0;
}
Java实现
import java.util.Scanner;
public class NQueens {
static final int MAX_N = 10; // 定义棋盘最大尺寸
static int n; // 棋盘大小
static int[] queen = new int[MAX_N]; // 用于记录每行皇后放置的列位置
// 检查当前位置是否可以放置皇后
static boolean is_safe(int row, int col) {
for (int i = 0; i < row; i++) {
// 检查列冲突
if (queen[i] == col) return false;
// 检查对角线冲突(主对角线和副对角线)
if (Math.abs(row - i) == Math.abs(col - queen[i])) return false;
}
return true;
}
// 深度优先搜索函数,用于放置皇后
static void dfs(int row) {
if (row == n) { // 如果已经成功放置了n个皇后,输出一种方案
for (int i = 0; i < n; i++) {
System.out.printf("%5d", queen[i] + 1); // 输出皇后所在列号,从1开始计数所以加1
}
System.out.println();
return;
}
for (int col = 0; col < n; col++) { // 尝试在当前行的每一列放置皇后
if (is_safe(row, col)) {
queen[row] = col;
dfs(row + 1);
queen[row] = -1; // 回溯,撤销当前位置的皇后放置
}
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt(); // 输入棋盘大小
for (int i = 0; i < n; i++) {
queen[i] = -1; // 初始化皇后位置为无效值
}
if (n < 4) {
System.out.println("no solute!");
} else {
dfs(0); // 从第0行开始深度优先搜索放置皇后
}
}
}
Python实现
n = 0 # 棋盘大小
queen = [] # 用于记录每行皇后放置的列位置
# 检查当前位置是否可以放置皇后
def is_safe(row, col):
for i in range(row):
# 检查列冲突
if queen[i] == col:
return False
# 检查对角线冲突(主对角线和副对角线)
if abs(row - i) == abs(col - queen[i]):
return False
return True
# 深度优先搜索函数,用于放置皇后
def dfs(row):
global n, queen
if row == n: # 如果已经成功放置了n个皇后,输出一种方案
for i in range(n):
print(f"{queen[i] + 1:5}", end="") # 输出皇后所在列号,从1开始计数所以加1
print()
return
for col in range(n): # 尝试在当前行的每一列放置皇后
if is_safe(row, col):
queen.append(col)
dfs(row + 1)
queen.pop() # 回溯,撤销当前位置的皇后放置
n = int(input()) # 输入棋盘大小
if n < 4:
print("no solute!")
else:
dfs(0) # 从第0行开始深度优先搜索放置皇后
💐The End💐点点关注,收藏不迷路💐
|