将LangGraph4j开发的Agent智能体封装成MCP服务(附源码)


在之前的文章 《Java大模型MCP服务端开发-数据库查询与数据分析》中,我们介绍了如何使用 Java 构建一个用于数据库查询的 MCP 服务,并实现了以下三个核心工具:

  • listTables:获取数据库中所有表的列表;
  • getTableSchema:获取指定数据表的结构(列信息);
  • executeMysqlQuery:执行给定的 SQL 查询语句,并返回结果或错误信息。

虽然上述工具实现了基本的数据库查询功能,但由于各工具之间存在一定的执行顺序依赖,导致在实际使用中灵活性和效率受限。而在 MCP 架构中,各工具本应具备良好的独立性和协同能力,因此这种设计在一定程度上限制了系统的潜力。

为了解决这一问题,我们进一步探索了使用 LangGraph4j 构建一个具备自主决策能力的数据库查询智能体(Agent)。随后,我们提出了一个新的问题:是否可以将基于 LangGraph4j 构建的智能体封装成 MCP 服务?

什么是将智能体封装为 MCP 服务?

所谓“将智能体封装为 MCP 服务”,是指将一个已经具备自主决策、任务规划、记忆管理、工具调用等功能的智能体系统,通过标准化接口包装为符合 MCP 协议的服务模块。这样,该智能体即可作为 MCP 网络中的一个独立节点,对外提供能力调用、资源访问、上下文交互等功能。

构建基于 MCP 框架的智能体 Agent 是实现多智能体系统(MAS)高效协作的重要方式。MCP 作为统一通信协议,为各类 Agent 提供了标准化接口和互操作性支持,使其能够无缝集并协同工作[^3]。以下是使用 MCP 框架搭建智能体 Agent 的关键步骤: ### 设计 Agent 能力声明文件 每个 Agent 需要定义其能力范围、交互方式及可用工具。通常通过 `a2a_agent_card.json` 或类似的 JSON 文件进行声明,例如: ```json { "agent_id": "hotel_search_agent", "name": "Hotel Search Agent", "description": "提供酒店搜索服务,支持按地点、价格、星级等条件筛选", "capabilities": ["search_hotels", "filter_by_price", "sort_by_rating"], "protocols": ["mcp-1.0"] } ``` 该文件用于向其他 Agent 和系统描述当前 Agent 的功能边界和通信规范[^1]。 ### 实现 Agent 核心逻辑 采用 LangChain 等框架可快速构建 LLM 驱动的 Agent,并将其接入 MCP 协议中。以下是一个使用 LangChain 构建的酒店搜索 Agent 示例代码片段: ```python from langchain.agents import initialize_agent, Tool from langchain.chat_models import ChatOpenAI from mcp.client import MCPClient class HotelSearchAgent: def __init__(self): self.llm = ChatOpenAI(model="gpt-4o") self.tools = [ Tool(name="SearchHotels", func=self._search_hotels, description="根据输入参数搜索酒店"), Tool(name="FilterByPrice", func=self._filter_by_price, description="根据价格过滤酒店列表") ] self.agent = initialize_agent(self.tools, self.llm, agent="structured-chat-zero-shot-react-description") def _search_hotels(self, location: str): # 模拟调用外部 API 进行酒店搜索 return [{"name": "Grand Hotel", "price": "$200", "rating": 4.5}, {"name": "Budget Inn", "price": "$80", "rating": 3.7}] def _filter_by_price(self, hotels: list, max_price: float): return [h for h in hotels if float(h["price"].replace("$", "")) <= max_price] def run(self, query: str): return self.agent.run(query) ``` 在此基础上,可通过 MCPClient 接口将 Agent 注册到 MCP 网络中,从而实现跨 Agent 通信与协作[^1]。 ### 配置服务端与发现机制 为了使 Agent 可被其他系统或 Agent 发现,需配置标准的 `.well-known/agent.json` 文件,内容如下: ```json { "name": "Hotel Search Agent", "url": "https://hotel-search-agent.example.com", "version": "1.0", "mcp_version": "1.0", "supported_protocols": ["mcp-1.0"], "contact": "[email protected]" } ``` 该文件放置于静态目录下的 `.well-known` 子目录中,便于自动发现和连接其他符合 MCP 标准的 Agent[^1]。 ### 启动服务并接入 MCP 网络 最后,在 `langchain_server.py` 中启动 Flask 或 FastAPI 服务以对外暴露接口,并确保与 MCP 客户端正确集: ```python from flask import Flask from hotel_search_app.langchain_agent import HotelSearchAgent app = Flask(__name__) agent = HotelSearchAgent() @app.route("/query", methods=["POST"]) def handle_query(): data = request.get_json() result = agent.run(data["query"]) return jsonify(result) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000) ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值