关于蚁群算法
其实大多数优化算法都是“试错”的过程,不同的是如何利用在“试错”过程中得到的经验。蚁群算法在“试错”的过程中通过留下信息素对未来的试错过程加以提示,从而保证一定的收敛性。
代码分析
我写了一份matlab蚁群算法三维避障规划的代码,能保证收敛,但不够优秀,可以作为基础加以改进。
无论是GA、SA、PSO、还是本文讲到的蚁群,应用在三维轨迹规划中都存在一个问题:如何将轨迹表述成一个解以及如何生成一个从起始点到终点的解。在我的A*算法三维规划博客中通过分解空间成类似点云的形式来表述解。而在蚁群算法三维规划中,我采用的是对空间切片的方式(可能不够好,但是能用)。
读取参数
clc; clear; close all;
%% 参数读取与设置
obstacleMatrix =