蚁群算法实现三维避障轨迹规划(Matlab)

本文介绍了使用蚁群算法进行三维避障轨迹规划的方法,通过Matlab实现,包括参数设置、障碍物环境绘制、路径搜索、信息素更新等功能。代码虽然能够收敛,但可能效率较低,轨迹平滑度不高,适合作为进一步优化的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于蚁群算法

其实大多数优化算法都是“试错”的过程,不同的是如何利用在“试错”过程中得到的经验。蚁群算法在“试错”的过程中通过留下信息素对未来的试错过程加以提示,从而保证一定的收敛性。

代码分析

我写了一份matlab蚁群算法三维避障规划的代码,能保证收敛,但不够优秀,可以作为基础加以改进。

无论是GA、SA、PSO、还是本文讲到的蚁群,应用在三维轨迹规划中都存在一个问题:如何将轨迹表述成一个解以及如何生成一个从起始点到终点的解。在我的A*算法三维规划博客中通过分解空间成类似点云的形式来表述解。而在蚁群算法三维规划中,我采用的是对空间切片的方式(可能不够好,但是能用)。

读取参数

clc; clear; close all;
%% 参数读取与设置
obstacleMatrix = 
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iπ弟弟

如果可以的话,请杯咖啡吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值