Creating an realtime collaboration tool: Agile Flush - .NET Oxford

こんにちは。ウォンテッドリーで Enabling チームでバックエンドエンジニアをしている市古(@sora_ichigo_x)です。 現在、Enablingチームでは技術的な取り組みを社外にも発信すべく、メンバーが週替わりで技術ブログをリレー形式で執筆しています。前回は冨永さんによる「Pocket終了に備えてObsidian Web Clipperに移行した話」でした。今回は、実践 Claude Code の話をしたいと思います。 先日、Anthropic から Claude 4 がリリースされ、それに合わせて Claude Code の一般提供が始まりました。これまで研究プレビューだった期間を経て、誰でも利用できるようになっています。 本記事には Claude Code を知らない方向けの解説も含みますが、実際の設定・運用がすぐに知りたい方は読み飛ばしてください。 目次Claude Co
本記事は、最近話題のMCPの入門記事です。 MCP(Model Context Protocol)について、以下の4ステップで紹介します。 ざっくり理解する 使ってみる 深く理解する 作ってみる 初心者でも順番に読み進めれば、MCPについてざっと理解、かんたんな実装ができるようになることを目指します💪 ざっくり理解する MCPとは、ざっくり言うと、LLMアプリと外部サービスを連携するための統一されたインターフェース(プロトコル)です。 LLMアプリとは、ChatGPTやClaude、Cursorなど、LLMを使用するためアプリケーションを指します。(⚠️ GPT-4oやclaude-3-5-sonnetなどのLLM自体とは区別してください。) 初期のLLMアプリは、どこまでいってもすごく賢いチャットツールでしかなく、結局はテキストを返答することしかできませんでした。 そのため、LLMアプ
TL;DR qdrant/mcp-server-qdrantを使えばClaude Desktopからベクトル検索エンジンを操作できるよ ベクトルデータベースなので、LLMとの相性が良いよ 「ここまでのチャットを整理して保存しておいて」ができるのは、すごすぎるよ 1. Qdrantとは Qdrantはベクトル検索エンジンです。テキストをベクトル化して保存し、意味的な類似性に基づいて検索することができます。 通常のキーワード検索と異なり、ベクトル検索では単語の正確な一致ではなく、コンテンツの意味的な類似性に基づいて結果を返します。これにより、「先週のミーティングの決定事項」といった自然言語のクエリで、関連する情報を見つけることができます。 このQdrantとClaudeを連携させることで、ベクトルDBをメモ帳として扱うブルジョワなナレッジマネジメントが実現します。 PostgreSQLやSQL
1. はじめに年末年始は仕事や転職活動で忙しく、恥ずかしながらAnthoropicの発表したMCP (Model Context Protocol)についてはあまり踏み込まずに簡単に眺めているのみに留まっていたモグリです。 色々と落ち着いてきたため、やっとMCPについて勉強しています。 MCPを用いると例えば、現在(2025/03/24)まだ日本では導入されていないWeb検索やBrowser Useの機能をClaudeに組み込めてとても便利だなと思います。 一方で、Claudeにより複雑な作業をさせたいと考えると、Web検索やBrowser Useの機能をもったDeep Researchエージェントを自前で組んで、その結果だけ返すMCPサーバーを建てた方が良い作業が出来るのではないかと考えます。(API利用料は置いておいて。) Claude Desktop + Deep Research
こんにちは!AI-Bridge Labのこばです👋 最近、Anthropicが提供するAIアシスタント「Claude」のデスクトップアプリで、ローカル(自分のPC内の)ファイルに安全にアクセスできる機能「モデルコンテキストプロトコル(以下、MCP)」が追加されました。この機能を使えば、デスクトップ上のファイルを直接Claudeに読み書きさせることができ、より効率的なAI活用が可能になります。 しかも、MCPを使うことでファイルの操作だけでなくWeb検索や地図アプリ等、様々なアプリと連携することが可能です。 MCPについてのAnthropicの公式記事 https://www.anthropic.com/news/model-context-protocol ただ、Windows環境ではmac版と同じ方法だとnpxのバグで接続できないことがありますので、設定に少し工夫が必要です。 今回は、
皆さんこんにちは。CTOの松本です。LLM使ってますか?ChatGPT毎日触ってますか? LLMに熱狂してすでに1年以上が経ちましたが周辺エコシステムが充実してきたことでいろいろな取り組みがとても簡単に実現出来るようになったなーと感じています。 ということで今回はZapierを使った小ネタのご紹介です。 AI・LLM事業部の今 とその前に、AI・LLM事業部での取り組みから着想を得たものでして、AI・LLM事業部について簡単に紹介させてください。 LayerXの新規事業であるAI・LLM事業部では、バクラクでも取り組んできたビジネス文書の解析の延長としてLLMを活用して文書分析エンジンの開発を進めています。現在このエンジンを使ったエンタープライズ向けの新規プロダクト開発にいそしんでおります。とても楽しいですし、最近は様々なお客様からの引き合いも増えておりまして、事業成長に向けて満を持しての
■ Claude 3に例の「読了目安2時間」記事を解説させてみた Anthropicの先日出たばかりのClaude 3(Opus)が、ChatGPTのGPT-4を超えてきたと聞いて、自分の原稿を解説させてみたところ、確かに革新的な進歩が見られる。もはや内容を「理解」しているようにしか見えない。GPT-4では、昨年11月に試した時には、そうは見えず、優れた文章読解補助ツールという感じでしかなかった。 一昨年のCafe JILIS「高木浩光さんに訊く、個人データ保護の真髄 ——いま解き明かされる半世紀の経緯と混乱」は、発表した当時、長すぎて読めないから誰か要約してという悲鳴があがっていた。その後、ChatGPTの登場で、その要約能力に期待されたが、冒頭のところしか要約してくれなかったり、薄い論点リストが出てくるだけで、その期待に応えられるものではなかった。 もっとも、GPT-4でも、質問力があ
AIスタートアップの米Anthropicが、同社のチャットAI「Claude 3」向けに公式プロンプト集を公開している。3月11日までに64種類の使用例を公開中。専用のWebサイト「プロンプトライブラリ」で公開しており、英語と日本語表示に対応している。 例えば、入力した材料や好みに応じた料理レシピを提案する「料理クリエイター」などのプロンプトを公開している。プロンプトは「システム」と「ユーザー」の2つに分かれ、まず前者でAIに指示し、次に後者でユーザー個別の条件や要件を伝える仕組み。料理クリエイターの場合は以下のような具合だ(原文ママ)。 システム:あなたの仕事は、利用可能な材料や食事の好みに関するユーザーの入力に基づいて、パーソナライズされたレシピのアイデアを生成することです。この情報を使用して、ユーザーの食事のニーズに対応しながら、指定された材料を使用して作ることができるさまざまな創造
ChatGPTにGPTsが搭載されたころ、テーマを与えるとそれに沿ったアドベンチャーゲームが作れないかと試していた。特に「オホーツクに消ゆ」のような、コマンド選択式のミステリーアドベンチャーを色々と遊べたら楽しいかなと思っていた。 結果としてはうまくいかなかった。GPT-4が作成するストーリーは具体性に欠け、実在(しそうな)人物やローケーションなどに沿った展開を持たせることが難しかった。 最近Claude 3とよばれる、GPT-4を凌駕するといわれるLLMが現れた。なので今度はこれを使ってアドベンチャーゲーム生成を試してみた。使うモデルはProユーザーが使えるClaude 3 Opus。 例えば「上野駅」をテーマにして生成すると、以下のようなゲームができる。 上野駅4番ホーム。午前9時頃。 ホームの端で、男性の刺殺体が発見された。あなたは、現場に駆けつけた刑事の沢村。 目の前には血まみれの
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く