Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs

本文是LLM系列文章,针对《Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs》的翻译。

思维的逻辑查询:用知识图谱指导大型语言模型回答复杂的逻辑查询

摘要

尽管在许多任务中表现出色,但大型语言模型(LLM)在面对需要知识准确性的任务时,仍有产生幻觉甚至错误答案的风险。当处理需要多个逻辑推理步骤的逻辑查询时,这个问题变得更加明显。另一方面,基于知识图谱的问答方法能够借助知识图谱准确识别正确答案,但当知识图谱本身稀疏和不完整时,其准确性可能会迅速下降。如何以互惠互利的方式将知识图谱推理与LLM相结合,以缓解LLM的幻觉问题和知识图谱的不完整性问题,仍然是一个关键的挑战。在本文中,我们提出了“思维逻辑查询”(LGOT),这是第一个将LLM与基于知识图谱的逻辑查询推理相结合的方法。LGOT无缝结合了知识图谱推理和LLM,有效地将复杂的逻辑查询分解为易于回答的子问题。通过利用知识图谱推理和LLM,它成功地推导出了每个子问题的答案。通过汇总这些结果并为每个步骤选择最高质量的候选答案,LGOT可以对复杂问题获得准确的结果。我们的实验结果表明,性能得到了显著提升,比ChatGPT提高了20%。

1 引言

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值