Visual-RFT: Visual Reinforcement Fine-Tuning

摘要

强化微调(RFT)在像OpenAI o1这样的大型推理模型中,通过对答案的反馈进行学习,这在微调数据稀缺的应用中尤为有用。最近的开源工作如DeepSeek R1表明,使用可验证奖励的强化学习是复现o1的一个关键方向。虽然R1风格的模型在语言模型中取得了成功,但其在多模态领域的应用仍未得到充分探索。本文引入了视觉强化微调(Visual-RFT),进一步扩展了RFT在视觉任务上的应用领域。具体来说,Visual-RFT首先使用大型视觉语言模型(LVLMs)为每个输入生成包含推理标记和最终答案的多个响应,然后使用我们提出的视觉感知可验证奖励函数,通过策略优化算法(如组相对策略优化(GRPO))来更新模型。我们为不同的感知任务设计了不同的可验证奖励函数,例如目标检测的交并比(IoU)奖励。在细粒度图像分类、少样本目标检测、推理定位以及开放词汇目标检测基准上的实验结果表明,与监督微调(SFT)相比,Visual-RFT具有竞争力的性能和先进的泛化能力。例如,在约100个样本的单样本细粒度图像分类中,Visual-RFT的准确率比基线提高了24.3%。在少样本目标检测中,Visual-RFT在COCO的双样本设置下也超过基线21.9,在LVIS上超过15.4。我们的Visual-RFT代表了微调LVLMs的范式转变,

### 关于 Visual RFT 的工具或框架 Visual-RFT 是一种专注于多模态强化学习的技术方法,其核心理念在于利用强化学习中的试错机制来优化视觉任务的表现[^1]。这种方法特别适合处理标注数据有限的情况,在这种情况下传统的监督微调可能效果不佳。 目前关于 Visual-RFT 的具体实现工具和框架尚处于研究阶段,但可以推测它会基于现有的深度学习框架构建。以下是几个可能涉及的相关技术和框架: #### 1. **PyTorch 和 TensorFlow** 这些主流的深度学习框架支持复杂的神经网络结构设计以及强化学习算法的实现。由于 Visual-RFT 需要结合视觉输入与强化学习策略,因此 PyTorch 或 TensorFlow 可能是最常用的开发环境之一。 ```python import torch from torchvision import models, transforms from torch.nn import functional as F # 加载预训练模型作为基础架构 model = models.resnet50(pretrained=True) # 定义自定义层用于强化学习部分 class RLHead(torch.nn.Module): def __init__(self, input_dim, output_dim): super(RLHead, self).__init__() self.fc = torch.nn.Linear(input_dim, output_dim) def forward(self, x): return F.relu(self.fc(x)) ``` #### 2. **Stable Baselines3 (SB3)** 这是一个专门为强化学习设计的 Python 库,提供了多种经典的强化学习算法实现。如果需要快速搭建一个基于强化学习的任务调整模块,Stable Baselines3 将是一个不错的选择。 ```python from stable_baselines3 import PPO # 使用 Proximal Policy Optimization 进行训练 model = PPO("MlpPolicy", env, verbose=1) model.learn(total_timesteps=10_000) ``` #### 3. **Hugging Face Transformers** 虽然 Hugging Face 主要关注自然语言处理领域,但它也逐渐扩展到多模态应用中。未来可能会有针对视觉任务的强化学习微调功能集成至该平台。 --- ### 当前配置状态分析 另外需要注意的是,某些特定环境下可能存在额外的约束条件或者初始化参数设置需求。例如在一个较早的时间点记录下的系统日志显示当前配置为真值 `true`[^2]。这表明在实际部署过程中需注意兼容性和版本控制等问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值