blob: 8a433922fdf0009f1bc4ed0a1a0caa146a798977 [file] [log] [blame]
[email protected]7f18b7c42012-02-24 09:13:091// Copyright (c) 2012 The Chromium Authors. All rights reserved.
[email protected]3125d6462009-09-01 20:50:172// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
[email protected]2c691392013-04-25 20:47:185// Weak pointers are pointers to an object that do not affect its lifetime,
6// and which may be invalidated (i.e. reset to NULL) by the object, or its
7// owner, at any time, most commonly when the object is about to be deleted.
8
9// Weak pointers are useful when an object needs to be accessed safely by one
10// or more objects other than its owner, and those callers can cope with the
11// object vanishing and e.g. tasks posted to it being silently dropped.
12// Reference-counting such an object would complicate the ownership graph and
13// make it harder to reason about the object's lifetime.
14
[email protected]3125d6462009-09-01 20:50:1715// EXAMPLE:
16//
[email protected]2c691392013-04-25 20:47:1817// class Controller {
[email protected]3125d6462009-09-01 20:50:1718// public:
[email protected]2c691392013-04-25 20:47:1819// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
[email protected]3125d6462009-09-01 20:50:1720// void WorkComplete(const Result& result) { ... }
[email protected]2c691392013-04-25 20:47:1821// private:
[email protected]ed3f67342013-05-29 08:04:3222// // Member variables should appear before the WeakPtrFactory, to ensure
23// // that any WeakPtrs to Controller are invalidated before its members
24// // variable's destructors are executed, rendering them invalid.
[email protected]2c691392013-04-25 20:47:1825// WeakPtrFactory<Controller> weak_factory_;
[email protected]3125d6462009-09-01 20:50:1726// };
27//
28// class Worker {
29// public:
30// static void StartNew(const WeakPtr<Controller>& controller) {
31// Worker* worker = new Worker(controller);
32// // Kick off asynchronous processing...
33// }
34// private:
35// Worker(const WeakPtr<Controller>& controller)
36// : controller_(controller) {}
37// void DidCompleteAsynchronousProcessing(const Result& result) {
38// if (controller_)
39// controller_->WorkComplete(result);
40// }
41// WeakPtr<Controller> controller_;
42// };
43//
[email protected]2c691392013-04-25 20:47:1844// With this implementation a caller may use SpawnWorker() to dispatch multiple
45// Workers and subsequently delete the Controller, without waiting for all
46// Workers to have completed.
47
48// ------------------------- IMPORTANT: Thread-safety -------------------------
49
[email protected]ed3f67342013-05-29 08:04:3250// Weak pointers may be passed safely between threads, but must always be
davidbene58877e2014-10-22 18:37:1151// dereferenced and invalidated on the same SequencedTaskRunner otherwise
52// checking the pointer would be racey.
[email protected]ed3f67342013-05-29 08:04:3253//
54// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
55// is dereferenced, the factory and its WeakPtrs become bound to the calling
davidbene58877e2014-10-22 18:37:1156// thread or current SequencedWorkerPool token, and cannot be dereferenced or
57// invalidated on any other task runner. Bound WeakPtrs can still be handed
58// off to other task runners, e.g. to use to post tasks back to object on the
59// bound sequence.
[email protected]ed3f67342013-05-29 08:04:3260//
davidbene58877e2014-10-22 18:37:1161// Invalidating the factory's WeakPtrs un-binds it from the sequence, allowing
62// it to be passed for a different sequence to use or delete it.
[email protected]3125d6462009-09-01 20:50:1763
[email protected]3b63f8f42011-03-28 01:54:1564#ifndef BASE_MEMORY_WEAK_PTR_H_
65#define BASE_MEMORY_WEAK_PTR_H_
[email protected]3125d6462009-09-01 20:50:1766
[email protected]4c44b8442012-06-15 16:36:1267#include "base/basictypes.h"
[email protected]0bea7252011-08-05 15:34:0068#include "base/base_export.h"
[email protected]3125d6462009-09-01 20:50:1769#include "base/logging.h"
[email protected]3b63f8f42011-03-28 01:54:1570#include "base/memory/ref_counted.h"
[email protected]d52426c2013-07-30 19:26:4071#include "base/sequence_checker.h"
[email protected]4c44b8442012-06-15 16:36:1272#include "base/template_util.h"
[email protected]3125d6462009-09-01 20:50:1773
74namespace base {
75
[email protected]4c44b8442012-06-15 16:36:1276template <typename T> class SupportsWeakPtr;
77template <typename T> class WeakPtr;
78
[email protected]3125d6462009-09-01 20:50:1779namespace internal {
80// These classes are part of the WeakPtr implementation.
81// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
82
[email protected]0bea7252011-08-05 15:34:0083class BASE_EXPORT WeakReference {
[email protected]3125d6462009-09-01 20:50:1784 public:
davidbene58877e2014-10-22 18:37:1185 // Although Flag is bound to a specific SequencedTaskRunner, it may be
86 // deleted from another via base::WeakPtr::~WeakPtr().
[email protected]a827a562014-06-11 00:37:4287 class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
[email protected]d52e9702009-09-17 00:31:0988 public:
[email protected]1edefc42011-08-26 17:32:2989 Flag();
[email protected]59326aac2009-09-25 23:34:3490
[email protected]6aacd8d2011-03-10 19:56:5391 void Invalidate();
92 bool IsValid() const;
[email protected]59326aac2009-09-25 23:34:3493
94 private:
[email protected]05b1cd612011-04-11 20:47:2595 friend class base::RefCountedThreadSafe<Flag>;
96
97 ~Flag();
98
[email protected]d52426c2013-07-30 19:26:4099 SequenceChecker sequence_checker_;
[email protected]1edefc42011-08-26 17:32:29100 bool is_valid_;
[email protected]3125d6462009-09-01 20:50:17101 };
102
[email protected]3a3d47472010-07-15 21:03:54103 WeakReference();
[email protected]1edefc42011-08-26 17:32:29104 explicit WeakReference(const Flag* flag);
[email protected]201366472010-07-16 17:22:49105 ~WeakReference();
[email protected]59326aac2009-09-25 23:34:34106
[email protected]3a3d47472010-07-15 21:03:54107 bool is_valid() const;
[email protected]59326aac2009-09-25 23:34:34108
109 private:
[email protected]1edefc42011-08-26 17:32:29110 scoped_refptr<const Flag> flag_;
[email protected]3125d6462009-09-01 20:50:17111};
112
[email protected]0bea7252011-08-05 15:34:00113class BASE_EXPORT WeakReferenceOwner {
[email protected]3125d6462009-09-01 20:50:17114 public:
[email protected]3a3d47472010-07-15 21:03:54115 WeakReferenceOwner();
116 ~WeakReferenceOwner();
[email protected]59326aac2009-09-25 23:34:34117
[email protected]3a3d47472010-07-15 21:03:54118 WeakReference GetRef() const;
[email protected]3125d6462009-09-01 20:50:17119
[email protected]59326aac2009-09-25 23:34:34120 bool HasRefs() const {
[email protected]1edefc42011-08-26 17:32:29121 return flag_.get() && !flag_->HasOneRef();
[email protected]59326aac2009-09-25 23:34:34122 }
123
[email protected]3a3d47472010-07-15 21:03:54124 void Invalidate();
[email protected]3125d6462009-09-01 20:50:17125
126 private:
[email protected]1edefc42011-08-26 17:32:29127 mutable scoped_refptr<WeakReference::Flag> flag_;
[email protected]3125d6462009-09-01 20:50:17128};
129
130// This class simplifies the implementation of WeakPtr's type conversion
131// constructor by avoiding the need for a public accessor for ref_. A
132// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
133// base class gives us a way to access ref_ in a protected fashion.
[email protected]0bea7252011-08-05 15:34:00134class BASE_EXPORT WeakPtrBase {
[email protected]3125d6462009-09-01 20:50:17135 public:
[email protected]3a3d47472010-07-15 21:03:54136 WeakPtrBase();
[email protected]201366472010-07-16 17:22:49137 ~WeakPtrBase();
[email protected]3125d6462009-09-01 20:50:17138
139 protected:
[email protected]4c44b8442012-06-15 16:36:12140 explicit WeakPtrBase(const WeakReference& ref);
[email protected]3125d6462009-09-01 20:50:17141
142 WeakReference ref_;
143};
144
[email protected]4c44b8442012-06-15 16:36:12145// This class provides a common implementation of common functions that would
146// otherwise get instantiated separately for each distinct instantiation of
147// SupportsWeakPtr<>.
148class SupportsWeakPtrBase {
149 public:
150 // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
151 // conversion will only compile if there is exists a Base which inherits
152 // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
153 // function that makes calling this easier.
154 template<typename Derived>
155 static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
156 typedef
157 is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
158 COMPILE_ASSERT(convertible::value,
159 AsWeakPtr_argument_inherits_from_SupportsWeakPtr);
160 return AsWeakPtrImpl<Derived>(t, *t);
161 }
162
163 private:
164 // This template function uses type inference to find a Base of Derived
165 // which is an instance of SupportsWeakPtr<Base>. We can then safely
166 // static_cast the Base* to a Derived*.
167 template <typename Derived, typename Base>
168 static WeakPtr<Derived> AsWeakPtrImpl(
169 Derived* t, const SupportsWeakPtr<Base>&) {
170 WeakPtr<Base> ptr = t->Base::AsWeakPtr();
171 return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
172 }
173};
174
[email protected]3125d6462009-09-01 20:50:17175} // namespace internal
176
[email protected]3125d6462009-09-01 20:50:17177template <typename T> class WeakPtrFactory;
178
179// The WeakPtr class holds a weak reference to |T*|.
180//
181// This class is designed to be used like a normal pointer. You should always
182// null-test an object of this class before using it or invoking a method that
183// may result in the underlying object being destroyed.
184//
185// EXAMPLE:
186//
187// class Foo { ... };
188// WeakPtr<Foo> foo;
189// if (foo)
190// foo->method();
191//
192template <typename T>
193class WeakPtr : public internal::WeakPtrBase {
194 public:
195 WeakPtr() : ptr_(NULL) {
196 }
197
[email protected]c33acdb2013-03-02 02:31:45198 // Allow conversion from U to T provided U "is a" T. Note that this
199 // is separate from the (implicit) copy constructor.
[email protected]3125d6462009-09-01 20:50:17200 template <typename U>
[email protected]c33acdb2013-03-02 02:31:45201 WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
[email protected]3125d6462009-09-01 20:50:17202 }
203
204 T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
[email protected]3125d6462009-09-01 20:50:17205
[email protected]f1836f42012-02-29 06:59:03206 T& operator*() const {
[email protected]3125d6462009-09-01 20:50:17207 DCHECK(get() != NULL);
[email protected]f1836f42012-02-29 06:59:03208 return *get();
[email protected]3125d6462009-09-01 20:50:17209 }
210 T* operator->() const {
211 DCHECK(get() != NULL);
212 return get();
213 }
214
[email protected]380b1392013-06-06 05:32:37215 // Allow WeakPtr<element_type> to be used in boolean expressions, but not
216 // implicitly convertible to a real bool (which is dangerous).
217 //
218 // Note that this trick is only safe when the == and != operators
219 // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
220 // will compile but do the wrong thing (i.e., convert to Testable
221 // and then do the comparison).
222 private:
223 typedef T* WeakPtr::*Testable;
224
225 public:
226 operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
227
[email protected]f103ab72009-09-02 17:10:59228 void reset() {
229 ref_ = internal::WeakReference();
230 ptr_ = NULL;
231 }
232
[email protected]3125d6462009-09-01 20:50:17233 private:
[email protected]380b1392013-06-06 05:32:37234 // Explicitly declare comparison operators as required by the bool
235 // trick, but keep them private.
236 template <class U> bool operator==(WeakPtr<U> const&) const;
237 template <class U> bool operator!=(WeakPtr<U> const&) const;
238
[email protected]4c44b8442012-06-15 16:36:12239 friend class internal::SupportsWeakPtrBase;
[email protected]c33acdb2013-03-02 02:31:45240 template <typename U> friend class WeakPtr;
[email protected]3125d6462009-09-01 20:50:17241 friend class SupportsWeakPtr<T>;
242 friend class WeakPtrFactory<T>;
243
244 WeakPtr(const internal::WeakReference& ref, T* ptr)
[email protected]5d6688f2012-07-11 21:39:03245 : WeakPtrBase(ref),
246 ptr_(ptr) {
[email protected]3125d6462009-09-01 20:50:17247 }
248
249 // This pointer is only valid when ref_.is_valid() is true. Otherwise, its
250 // value is undefined (as opposed to NULL).
251 T* ptr_;
252};
253
[email protected]2c691392013-04-25 20:47:18254// A class may be composed of a WeakPtrFactory and thereby
255// control how it exposes weak pointers to itself. This is helpful if you only
256// need weak pointers within the implementation of a class. This class is also
257// useful when working with primitive types. For example, you could have a
258// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
259template <class T>
260class WeakPtrFactory {
261 public:
262 explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
263 }
264
265 ~WeakPtrFactory() {
266 ptr_ = NULL;
267 }
268
269 WeakPtr<T> GetWeakPtr() {
270 DCHECK(ptr_);
271 return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
272 }
273
274 // Call this method to invalidate all existing weak pointers.
275 void InvalidateWeakPtrs() {
276 DCHECK(ptr_);
277 weak_reference_owner_.Invalidate();
278 }
279
280 // Call this method to determine if any weak pointers exist.
281 bool HasWeakPtrs() const {
282 DCHECK(ptr_);
283 return weak_reference_owner_.HasRefs();
284 }
285
[email protected]2c691392013-04-25 20:47:18286 private:
287 internal::WeakReferenceOwner weak_reference_owner_;
288 T* ptr_;
289 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
290};
291
292// A class may extend from SupportsWeakPtr to let others take weak pointers to
293// it. This avoids the class itself implementing boilerplate to dispense weak
294// pointers. However, since SupportsWeakPtr's destructor won't invalidate
295// weak pointers to the class until after the derived class' members have been
296// destroyed, its use can lead to subtle use-after-destroy issues.
[email protected]3125d6462009-09-01 20:50:17297template <class T>
[email protected]4c44b8442012-06-15 16:36:12298class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
[email protected]3125d6462009-09-01 20:50:17299 public:
300 SupportsWeakPtr() {}
301
302 WeakPtr<T> AsWeakPtr() {
303 return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
304 }
305
[email protected]cb932482012-06-26 06:23:00306 protected:
307 ~SupportsWeakPtr() {}
308
[email protected]3125d6462009-09-01 20:50:17309 private:
310 internal::WeakReferenceOwner weak_reference_owner_;
311 DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
312};
313
[email protected]4c44b8442012-06-15 16:36:12314// Helper function that uses type deduction to safely return a WeakPtr<Derived>
315// when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
316// extends a Base that extends SupportsWeakPtr<Base>.
317//
318// EXAMPLE:
319// class Base : public base::SupportsWeakPtr<Producer> {};
320// class Derived : public Base {};
321//
322// Derived derived;
323// base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
324//
325// Note that the following doesn't work (invalid type conversion) since
326// Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
327// and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
328// the caller.
329//
330// base::WeakPtr<Derived> ptr = derived.AsWeakPtr(); // Fails.
331
332template <typename Derived>
333WeakPtr<Derived> AsWeakPtr(Derived* t) {
334 return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
335}
336
[email protected]3125d6462009-09-01 20:50:17337} // namespace base
338
[email protected]3b63f8f42011-03-28 01:54:15339#endif // BASE_MEMORY_WEAK_PTR_H_