man/PCA.Rd
883f7f27
 % Generated by roxygen2: do not edit by hand
 % Please edit documentation in R/PCA_class.R
8db793ae
 \name{PCA}
883f7f27
 \alias{PCA}
d0f81a51
 \title{Principal Component Analysis (PCA)}
8db793ae
 \usage{
acec9d54
 PCA(number_components = 2, ...)
8db793ae
 }
56a019fe
 \arguments{
09388373
 \item{number_components}{(numeric, integer) The number of Principal Components calculated. The default is \code{2}.\cr}
acec9d54
 
d0f81a51
 \item{...}{Additional slots and values passed to \code{struct_class}.}
56a019fe
 }
7af536f9
 \value{
5d51daa4
 A  \code{PCA} object with the following \code{output} slots:
 \tabular{ll}{
 \code{scores} \tab          (DatasetExperiment) A matrix of PCA scores where each column corresponds to a Principal Component. \cr
 \code{loadings} \tab          (data.frame)  \cr
 \code{eigenvalues} \tab          (data.frame)  \cr
 \code{ssx} \tab          (numeric)  \cr
 \code{correlation} \tab          (data.frame)  \cr
 \code{that} \tab          (DatasetExperiment)  \cr
 }
7af536f9
 }
883f7f27
 \description{
d0f81a51
 PCA is a multivariate data reduction technique. It summarises the data in a smaller number of Principal Components that maximise variance.
883f7f27
 }
09388373
 \section{Inheritance}{
 
 A \code{PCA} object inherits the following \code{struct} classes: \cr\cr
55546c0b
 \verb{[PCA]} >> \verb{[model]} >> \verb{[struct_class]}
09388373
 }
 
1a7cd70b
 \examples{
09388373
 M = PCA(
       number_components = 2)
 
1a7cd70b
 }