883f7f27 |
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/PCA_class.R
|
8db793ae |
\name{PCA}
|
883f7f27 |
\alias{PCA}
|
d0f81a51 |
\title{Principal Component Analysis (PCA)}
|
8db793ae |
\usage{
|
acec9d54 |
PCA(number_components = 2, ...)
|
8db793ae |
}
|
56a019fe |
\arguments{
|
09388373 |
\item{number_components}{(numeric, integer) The number of Principal Components calculated. The default is \code{2}.\cr}
|
acec9d54 |
|
d0f81a51 |
\item{...}{Additional slots and values passed to \code{struct_class}.}
|
56a019fe |
}
|
7af536f9 |
\value{
|
5d51daa4 |
A \code{PCA} object with the following \code{output} slots:
\tabular{ll}{
\code{scores} \tab (DatasetExperiment) A matrix of PCA scores where each column corresponds to a Principal Component. \cr
\code{loadings} \tab (data.frame) \cr
\code{eigenvalues} \tab (data.frame) \cr
\code{ssx} \tab (numeric) \cr
\code{correlation} \tab (data.frame) \cr
\code{that} \tab (DatasetExperiment) \cr
}
|
7af536f9 |
}
|
883f7f27 |
\description{
|
d0f81a51 |
PCA is a multivariate data reduction technique. It summarises the data in a smaller number of Principal Components that maximise variance.
|
883f7f27 |
}
|
09388373 |
\section{Inheritance}{
A \code{PCA} object inherits the following \code{struct} classes: \cr\cr
|
55546c0b |
\verb{[PCA]} >> \verb{[model]} >> \verb{[struct_class]}
|
09388373 |
}
|
1a7cd70b |
\examples{
|
09388373 |
M = PCA(
number_components = 2)
|
1a7cd70b |
}
|