man/PLSR.Rd
883f7f27
 % Generated by roxygen2: do not edit by hand
 % Please edit documentation in R/PLSR_class.R
8db793ae
 \name{PLSR}
883f7f27
 \alias{PLSR}
d0f81a51
 \title{Partial least squares regression}
8db793ae
 \usage{
acec9d54
 PLSR(number_components = 2, factor_name, ...)
8db793ae
 }
56a019fe
 \arguments{
09388373
 \item{number_components}{(numeric, integer) The number of PLS components. The default is \code{2}.\cr}
a110b7e7
 
09b8b680
 \item{factor_name}{(character) The name of sample meta column(s) to use.}
a110b7e7
 
d0f81a51
 \item{...}{Additional slots and values passed to \code{struct_class}.}
56a019fe
 }
7af536f9
 \value{
5d51daa4
 A  \code{PLSR} object with the following \code{output} slots:
 \tabular{ll}{
09b8b680
 \code{scores} \tab          (DatasetExperiment)  \cr
5d51daa4
 \code{loadings} \tab          (data.frame)  \cr
 \code{yhat} \tab          (data.frame)  \cr
09b8b680
 \code{y} \tab          (data.frame)  \cr
5d51daa4
 \code{reg_coeff} \tab          (data.frame)  \cr
 \code{vip} \tab          (data.frame)  \cr
 \code{pls_model} \tab          (list)  \cr
 \code{pred} \tab          (data.frame)  \cr
09b8b680
 \code{sr} \tab          (data.frame) Selectivity ratio for a variable represents a measure of a variable's importance in the PLS model. The output data.frame contains a column of selectivity ratios, a column of p-values based on an F-distribution and a column indicating significance at p < 0.05. \cr
 \code{sr_pvalue} \tab          (data.frame) A p-value computed from the Selectivity Ratio based on an F-distribution. \cr
5d51daa4
 }
7af536f9
 }
883f7f27
 \description{
d0f81a51
 PLS is a multivariate regression technique that extracts latent variables maximising covariance between the input data and the response. For regression the response is a continuous variable.
 }
 \details{
09388373
 This object makes use of functionality from the following packages:\itemize{  \item{\code{pls}}}
883f7f27
 }
09388373
 \section{Inheritance}{
 
 A \code{PLSR} object inherits the following \code{struct} classes: \cr\cr
55546c0b
 \verb{[PLSR]} >> \verb{[model]} >> \verb{[struct_class]}
09388373
 }
 
5dcc4dc2
 \examples{
09388373
 M = PLSR(
       number_components = 2,
       factor_name = "V1")
 
4391cdba
 M = PLSR(factor_name='run_order')
5dcc4dc2
 }
d0f81a51
 \references{
32654e96
 Liland K, Mevik B, Wehrens R (2023). \emph{pls: Partial Least Squares and
09388373
 Principal Component Regression}. R package version 2.8-3,
32654e96
 \url{https://CRAN.R-project.org/package=pls}.
d0f81a51
 }