% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PCA_class.R \name{PCA} \alias{PCA} \title{Principal Component Analysis (PCA)} \usage{ PCA(number_components = 2, ...) } \arguments{ \item{number_components}{(numeric, integer) The number of Principal Components calculated. The default is \code{2}.\cr} \item{...}{Additional slots and values passed to \code{struct_class}.} } \value{ A \code{PCA} object with the following \code{output} slots: \tabular{ll}{ \code{scores} \tab (DatasetExperiment) A matrix of PCA scores where each column corresponds to a Principal Component. \cr \code{loadings} \tab (data.frame) \cr \code{eigenvalues} \tab (data.frame) \cr \code{ssx} \tab (numeric) \cr \code{correlation} \tab (data.frame) \cr \code{that} \tab (DatasetExperiment) \cr } } \description{ PCA is a multivariate data reduction technique. It summarises the data in a smaller number of Principal Components that maximise variance. } \section{Inheritance}{ A \code{PCA} object inherits the following \code{struct} classes: \cr\cr \verb{[PCA]} >> \verb{[model]} >> \verb{[struct_class]} } \examples{ M = PCA( number_components = 2) }