Struct CreateClusterFluentBuilder

Source
pub struct CreateClusterFluentBuilder { /* private fields */ }
Expand description

Fluent builder constructing a request to CreateCluster.

Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see Amazon SageMaker HyperPod in the Amazon SageMaker Developer Guide.

Implementations§

Source§

impl CreateClusterFluentBuilder

Source

pub fn as_input(&self) -> &CreateClusterInputBuilder

Access the CreateCluster as a reference.

Source

pub async fn send( self, ) -> Result<CreateClusterOutput, SdkError<CreateClusterError, HttpResponse>>

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

Source

pub fn customize( self, ) -> CustomizableOperation<CreateClusterOutput, CreateClusterError, Self>

Consumes this builder, creating a customizable operation that can be modified before being sent.

Source

pub fn cluster_name(self, input: impl Into<String>) -> Self

The name for the new SageMaker HyperPod cluster.

Source

pub fn set_cluster_name(self, input: Option<String>) -> Self

The name for the new SageMaker HyperPod cluster.

Source

pub fn get_cluster_name(&self) -> &Option<String>

The name for the new SageMaker HyperPod cluster.

Source

pub fn instance_groups(self, input: ClusterInstanceGroupSpecification) -> Self

Appends an item to InstanceGroups.

To override the contents of this collection use set_instance_groups.

The instance groups to be created in the SageMaker HyperPod cluster.

Source

pub fn set_instance_groups( self, input: Option<Vec<ClusterInstanceGroupSpecification>>, ) -> Self

The instance groups to be created in the SageMaker HyperPod cluster.

Source

pub fn get_instance_groups( &self, ) -> &Option<Vec<ClusterInstanceGroupSpecification>>

The instance groups to be created in the SageMaker HyperPod cluster.

Source

pub fn vpc_config(self, input: VpcConfig) -> Self

Specifies the Amazon Virtual Private Cloud (VPC) that is associated with the Amazon SageMaker HyperPod cluster. You can control access to and from your resources by configuring your VPC. For more information, see Give SageMaker access to resources in your Amazon VPC.

When your Amazon VPC and subnets support IPv6, network communications differ based on the cluster orchestration platform:

  • Slurm-orchestrated clusters automatically configure nodes with dual IPv6 and IPv4 addresses, allowing immediate IPv6 network communications.

  • In Amazon EKS-orchestrated clusters, nodes receive dual-stack addressing, but pods can only use IPv6 when the Amazon EKS cluster is explicitly IPv6-enabled. For information about deploying an IPv6 Amazon EKS cluster, see Amazon EKS IPv6 Cluster Deployment.

Additional resources for IPv6 configuration:

Source

pub fn set_vpc_config(self, input: Option<VpcConfig>) -> Self

Specifies the Amazon Virtual Private Cloud (VPC) that is associated with the Amazon SageMaker HyperPod cluster. You can control access to and from your resources by configuring your VPC. For more information, see Give SageMaker access to resources in your Amazon VPC.

When your Amazon VPC and subnets support IPv6, network communications differ based on the cluster orchestration platform:

  • Slurm-orchestrated clusters automatically configure nodes with dual IPv6 and IPv4 addresses, allowing immediate IPv6 network communications.

  • In Amazon EKS-orchestrated clusters, nodes receive dual-stack addressing, but pods can only use IPv6 when the Amazon EKS cluster is explicitly IPv6-enabled. For information about deploying an IPv6 Amazon EKS cluster, see Amazon EKS IPv6 Cluster Deployment.

Additional resources for IPv6 configuration:

Source

pub fn get_vpc_config(&self) -> &Option<VpcConfig>

Specifies the Amazon Virtual Private Cloud (VPC) that is associated with the Amazon SageMaker HyperPod cluster. You can control access to and from your resources by configuring your VPC. For more information, see Give SageMaker access to resources in your Amazon VPC.

When your Amazon VPC and subnets support IPv6, network communications differ based on the cluster orchestration platform:

  • Slurm-orchestrated clusters automatically configure nodes with dual IPv6 and IPv4 addresses, allowing immediate IPv6 network communications.

  • In Amazon EKS-orchestrated clusters, nodes receive dual-stack addressing, but pods can only use IPv6 when the Amazon EKS cluster is explicitly IPv6-enabled. For information about deploying an IPv6 Amazon EKS cluster, see Amazon EKS IPv6 Cluster Deployment.

Additional resources for IPv6 configuration:

Source

pub fn tags(self, input: Tag) -> Self

Appends an item to Tags.

To override the contents of this collection use set_tags.

Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.

Source

pub fn set_tags(self, input: Option<Vec<Tag>>) -> Self

Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.

Source

pub fn get_tags(&self) -> &Option<Vec<Tag>>

Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.

Source

pub fn orchestrator(self, input: ClusterOrchestrator) -> Self

The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is "eks", which is to use an Amazon Elastic Kubernetes Service (EKS) cluster as the orchestrator.

Source

pub fn set_orchestrator(self, input: Option<ClusterOrchestrator>) -> Self

The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is "eks", which is to use an Amazon Elastic Kubernetes Service (EKS) cluster as the orchestrator.

Source

pub fn get_orchestrator(&self) -> &Option<ClusterOrchestrator>

The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is "eks", which is to use an Amazon Elastic Kubernetes Service (EKS) cluster as the orchestrator.

Source

pub fn node_recovery(self, input: ClusterNodeRecovery) -> Self

The node recovery mode for the SageMaker HyperPod cluster. When set to Automatic, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set to None, cluster administrators will need to manually manage any faulty cluster instances.

Source

pub fn set_node_recovery(self, input: Option<ClusterNodeRecovery>) -> Self

The node recovery mode for the SageMaker HyperPod cluster. When set to Automatic, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set to None, cluster administrators will need to manually manage any faulty cluster instances.

Source

pub fn get_node_recovery(&self) -> &Option<ClusterNodeRecovery>

The node recovery mode for the SageMaker HyperPod cluster. When set to Automatic, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set to None, cluster administrators will need to manually manage any faulty cluster instances.

Trait Implementations§

Source§

impl Clone for CreateClusterFluentBuilder

Source§

fn clone(&self) -> CreateClusterFluentBuilder

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for CreateClusterFluentBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,