Struct DescribeFeatureGroupOutput

Source
#[non_exhaustive]
pub struct DescribeFeatureGroupOutput {
Show 18 fields pub feature_group_arn: Option<String>, pub feature_group_name: Option<String>, pub record_identifier_feature_name: Option<String>, pub event_time_feature_name: Option<String>, pub feature_definitions: Option<Vec<FeatureDefinition>>, pub creation_time: Option<DateTime>, pub last_modified_time: Option<DateTime>, pub online_store_config: Option<OnlineStoreConfig>, pub offline_store_config: Option<OfflineStoreConfig>, pub throughput_config: Option<ThroughputConfigDescription>, pub role_arn: Option<String>, pub feature_group_status: Option<FeatureGroupStatus>, pub offline_store_status: Option<OfflineStoreStatus>, pub last_update_status: Option<LastUpdateStatus>, pub failure_reason: Option<String>, pub description: Option<String>, pub next_token: Option<String>, pub online_store_total_size_bytes: Option<i64>, /* private fields */
}

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§feature_group_arn: Option<String>

The Amazon Resource Name (ARN) of the FeatureGroup.

§feature_group_name: Option<String>

he name of the FeatureGroup.

§record_identifier_feature_name: Option<String>

The name of the Feature used for RecordIdentifier, whose value uniquely identifies a record stored in the feature store.

§event_time_feature_name: Option<String>

The name of the feature that stores the EventTime of a Record in a FeatureGroup.

An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup. All Records in the FeatureGroup have a corresponding EventTime.

§feature_definitions: Option<Vec<FeatureDefinition>>

A list of the Features in the FeatureGroup. Each feature is defined by a FeatureName and FeatureType.

§creation_time: Option<DateTime>

A timestamp indicating when SageMaker created the FeatureGroup.

§last_modified_time: Option<DateTime>

A timestamp indicating when the feature group was last updated.

§online_store_config: Option<OnlineStoreConfig>

The configuration for the OnlineStore.

§offline_store_config: Option<OfflineStoreConfig>

The configuration of the offline store. It includes the following configurations:

  • Amazon S3 location of the offline store.

  • Configuration of the Glue data catalog.

  • Table format of the offline store.

  • Option to disable the automatic creation of a Glue table for the offline store.

  • Encryption configuration.

§throughput_config: Option<ThroughputConfigDescription>

Active throughput configuration of the feature group. There are two modes: ON_DEMAND and PROVISIONED. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.

Note: PROVISIONED throughput mode is supported only for feature groups that are offline-only, or use the Standard tier online store.

§role_arn: Option<String>

The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.

§feature_group_status: Option<FeatureGroupStatus>

The status of the feature group.

§offline_store_status: Option<OfflineStoreStatus>

The status of the OfflineStore. Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked

§last_update_status: Option<LastUpdateStatus>

A value indicating whether the update made to the feature group was successful.

§failure_reason: Option<String>

The reason that the FeatureGroup failed to be replicated in the OfflineStore. This is failure can occur because:

  • The FeatureGroup could not be created in the OfflineStore.

  • The FeatureGroup could not be deleted from the OfflineStore.

§description: Option<String>

A free form description of the feature group.

§next_token: Option<String>

A token to resume pagination of the list of Features (FeatureDefinitions).

§online_store_total_size_bytes: Option<i64>

The size of the OnlineStore in bytes.

Implementations§

Source§

impl DescribeFeatureGroupOutput

Source

pub fn feature_group_arn(&self) -> Option<&str>

The Amazon Resource Name (ARN) of the FeatureGroup.

Source

pub fn feature_group_name(&self) -> Option<&str>

he name of the FeatureGroup.

Source

pub fn record_identifier_feature_name(&self) -> Option<&str>

The name of the Feature used for RecordIdentifier, whose value uniquely identifies a record stored in the feature store.

Source

pub fn event_time_feature_name(&self) -> Option<&str>

The name of the feature that stores the EventTime of a Record in a FeatureGroup.

An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup. All Records in the FeatureGroup have a corresponding EventTime.

Source

pub fn feature_definitions(&self) -> &[FeatureDefinition]

A list of the Features in the FeatureGroup. Each feature is defined by a FeatureName and FeatureType.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .feature_definitions.is_none().

Source

pub fn creation_time(&self) -> Option<&DateTime>

A timestamp indicating when SageMaker created the FeatureGroup.

Source

pub fn last_modified_time(&self) -> Option<&DateTime>

A timestamp indicating when the feature group was last updated.

Source

pub fn online_store_config(&self) -> Option<&OnlineStoreConfig>

The configuration for the OnlineStore.

Source

pub fn offline_store_config(&self) -> Option<&OfflineStoreConfig>

The configuration of the offline store. It includes the following configurations:

  • Amazon S3 location of the offline store.

  • Configuration of the Glue data catalog.

  • Table format of the offline store.

  • Option to disable the automatic creation of a Glue table for the offline store.

  • Encryption configuration.

Source

pub fn throughput_config(&self) -> Option<&ThroughputConfigDescription>

Active throughput configuration of the feature group. There are two modes: ON_DEMAND and PROVISIONED. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.

Note: PROVISIONED throughput mode is supported only for feature groups that are offline-only, or use the Standard tier online store.

Source

pub fn role_arn(&self) -> Option<&str>

The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.

Source

pub fn feature_group_status(&self) -> Option<&FeatureGroupStatus>

The status of the feature group.

Source

pub fn offline_store_status(&self) -> Option<&OfflineStoreStatus>

The status of the OfflineStore. Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked

Source

pub fn last_update_status(&self) -> Option<&LastUpdateStatus>

A value indicating whether the update made to the feature group was successful.

Source

pub fn failure_reason(&self) -> Option<&str>

The reason that the FeatureGroup failed to be replicated in the OfflineStore. This is failure can occur because:

  • The FeatureGroup could not be created in the OfflineStore.

  • The FeatureGroup could not be deleted from the OfflineStore.

Source

pub fn description(&self) -> Option<&str>

A free form description of the feature group.

Source

pub fn next_token(&self) -> Option<&str>

A token to resume pagination of the list of Features (FeatureDefinitions).

Source

pub fn online_store_total_size_bytes(&self) -> Option<i64>

The size of the OnlineStore in bytes.

Source§

impl DescribeFeatureGroupOutput

Source

pub fn builder() -> DescribeFeatureGroupOutputBuilder

Creates a new builder-style object to manufacture DescribeFeatureGroupOutput.

Trait Implementations§

Source§

impl Clone for DescribeFeatureGroupOutput

Source§

fn clone(&self) -> DescribeFeatureGroupOutput

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for DescribeFeatureGroupOutput

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for DescribeFeatureGroupOutput

Source§

fn eq(&self, other: &DescribeFeatureGroupOutput) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl RequestId for DescribeFeatureGroupOutput

Source§

fn request_id(&self) -> Option<&str>

Returns the request ID, or None if the service could not be reached.
Source§

impl StructuralPartialEq for DescribeFeatureGroupOutput

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,