diff options
author | Bruce Momjian | 2014-05-06 16:12:18 +0000 |
---|---|---|
committer | Bruce Momjian | 2014-05-06 16:12:18 +0000 |
commit | 0a7832005792fa6dad171f9cadb8d587fe0dd800 (patch) | |
tree | 365cfc42c521a52607e41394b08ef44d338d8fc1 /src/backend/optimizer | |
parent | fb85cd4320414c3f6e9c8bc69ec944200ae1e493 (diff) |
pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
Diffstat (limited to 'src/backend/optimizer')
34 files changed, 470 insertions, 464 deletions
diff --git a/src/backend/optimizer/geqo/geqo_eval.c b/src/backend/optimizer/geqo/geqo_eval.c index 6ceb090e855..de2a6709dd3 100644 --- a/src/backend/optimizer/geqo/geqo_eval.c +++ b/src/backend/optimizer/geqo/geqo_eval.c @@ -82,11 +82,11 @@ geqo_eval(PlannerInfo *root, Gene *tour, int num_gene) * not already contain some entries. The newly added entries will be * recycled by the MemoryContextDelete below, so we must ensure that the * list is restored to its former state before exiting. We can do this by - * truncating the list to its original length. NOTE this assumes that any + * truncating the list to its original length. NOTE this assumes that any * added entries are appended at the end! * * We also must take care not to mess up the outer join_rel_hash, if there - * is one. We can do this by just temporarily setting the link to NULL. + * is one. We can do this by just temporarily setting the link to NULL. * (If we are dealing with enough join rels, which we very likely are, a * new hash table will get built and used locally.) * @@ -217,7 +217,7 @@ gimme_tree(PlannerInfo *root, Gene *tour, int num_gene) * Merge a "clump" into the list of existing clumps for gimme_tree. * * We try to merge the clump into some existing clump, and repeat if - * successful. When no more merging is possible, insert the clump + * successful. When no more merging is possible, insert the clump * into the list, preserving the list ordering rule (namely, that * clumps of larger size appear earlier). * @@ -268,7 +268,7 @@ merge_clump(PlannerInfo *root, List *clumps, Clump *new_clump, bool force) /* * Recursively try to merge the enlarged old_clump with - * others. When no further merge is possible, we'll reinsert + * others. When no further merge is possible, we'll reinsert * it into the list. */ return merge_clump(root, clumps, old_clump, force); @@ -279,7 +279,7 @@ merge_clump(PlannerInfo *root, List *clumps, Clump *new_clump, bool force) /* * No merging is possible, so add new_clump as an independent clump, in - * proper order according to size. We can be fast for the common case + * proper order according to size. We can be fast for the common case * where it has size 1 --- it should always go at the end. */ if (clumps == NIL || new_clump->size == 1) diff --git a/src/backend/optimizer/path/allpaths.c b/src/backend/optimizer/path/allpaths.c index 5777cb2ff0c..41eaa2653ac 100644 --- a/src/backend/optimizer/path/allpaths.c +++ b/src/backend/optimizer/path/allpaths.c @@ -425,7 +425,7 @@ set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) * set_append_rel_size * Set size estimates for an "append relation" * - * The passed-in rel and RTE represent the entire append relation. The + * The passed-in rel and RTE represent the entire append relation. The * relation's contents are computed by appending together the output of * the individual member relations. Note that in the inheritance case, * the first member relation is actually the same table as is mentioned in @@ -489,7 +489,7 @@ set_append_rel_size(PlannerInfo *root, RelOptInfo *rel, /* * We have to copy the parent's targetlist and quals to the child, - * with appropriate substitution of variables. However, only the + * with appropriate substitution of variables. However, only the * baserestrictinfo quals are needed before we can check for * constraint exclusion; so do that first and then check to see if we * can disregard this child. @@ -553,7 +553,7 @@ set_append_rel_size(PlannerInfo *root, RelOptInfo *rel, /* * We have to make child entries in the EquivalenceClass data - * structures as well. This is needed either if the parent + * structures as well. This is needed either if the parent * participates in some eclass joins (because we will want to consider * inner-indexscan joins on the individual children) or if the parent * has useful pathkeys (because we should try to build MergeAppend @@ -594,7 +594,7 @@ set_append_rel_size(PlannerInfo *root, RelOptInfo *rel, /* * Accumulate per-column estimates too. We need not do anything - * for PlaceHolderVars in the parent list. If child expression + * for PlaceHolderVars in the parent list. If child expression * isn't a Var, or we didn't record a width estimate for it, we * have to fall back on a datatype-based estimate. * @@ -670,7 +670,7 @@ set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, /* * Generate access paths for each member relation, and remember the - * cheapest path for each one. Also, identify all pathkeys (orderings) + * cheapest path for each one. Also, identify all pathkeys (orderings) * and parameterizations (required_outer sets) available for the member * relations. */ @@ -720,7 +720,7 @@ set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, /* * Collect lists of all the available path orderings and - * parameterizations for all the children. We use these as a + * parameterizations for all the children. We use these as a * heuristic to indicate which sort orderings and parameterizations we * should build Append and MergeAppend paths for. */ @@ -806,7 +806,7 @@ set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, * so that not that many cases actually get considered here.) * * The Append node itself cannot enforce quals, so all qual checking must - * be done in the child paths. This means that to have a parameterized + * be done in the child paths. This means that to have a parameterized * Append path, we must have the exact same parameterization for each * child path; otherwise some children might be failing to check the * moved-down quals. To make them match up, we can try to increase the @@ -977,7 +977,7 @@ get_cheapest_parameterized_child_path(PlannerInfo *root, RelOptInfo *rel, * joinquals to be checked within the path's scan. However, some existing * paths might check the available joinquals already while others don't; * therefore, it's not clear which existing path will be cheapest after - * reparameterization. We have to go through them all and find out. + * reparameterization. We have to go through them all and find out. */ cheapest = NULL; foreach(lc, rel->pathlist) @@ -1103,7 +1103,7 @@ has_multiple_baserels(PlannerInfo *root) * * We don't currently support generating parameterized paths for subqueries * by pushing join clauses down into them; it seems too expensive to re-plan - * the subquery multiple times to consider different alternatives. So the + * the subquery multiple times to consider different alternatives. So the * subquery will have exactly one path. (The path will be parameterized * if the subquery contains LATERAL references, otherwise not.) Since there's * no freedom of action here, there's no need for a separate set_subquery_size @@ -1560,7 +1560,7 @@ make_rel_from_joinlist(PlannerInfo *root, List *joinlist) * independent jointree items in the query. This is > 1. * * 'initial_rels' is a list of RelOptInfo nodes for each independent - * jointree item. These are the components to be joined together. + * jointree item. These are the components to be joined together. * Note that levels_needed == list_length(initial_rels). * * Returns the final level of join relations, i.e., the relation that is @@ -1576,7 +1576,7 @@ make_rel_from_joinlist(PlannerInfo *root, List *joinlist) * needed for these paths need have been instantiated. * * Note to plugin authors: the functions invoked during standard_join_search() - * modify root->join_rel_list and root->join_rel_hash. If you want to do more + * modify root->join_rel_list and root->join_rel_hash. If you want to do more * than one join-order search, you'll probably need to save and restore the * original states of those data structures. See geqo_eval() for an example. */ @@ -1675,7 +1675,7 @@ standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) * column k is found to be unsafe to reference, we set unsafeColumns[k] to * TRUE, but we don't reject the subquery overall since column k might * not be referenced by some/all quals. The unsafeColumns[] array will be - * consulted later by qual_is_pushdown_safe(). It's better to do it this + * consulted later by qual_is_pushdown_safe(). It's better to do it this * way than to make the checks directly in qual_is_pushdown_safe(), because * when the subquery involves set operations we have to check the output * expressions in each arm of the set op. @@ -1768,7 +1768,7 @@ recurse_pushdown_safe(Node *setOp, Query *topquery, * check_output_expressions - check subquery's output expressions for safety * * There are several cases in which it's unsafe to push down an upper-level - * qual if it references a particular output column of a subquery. We check + * qual if it references a particular output column of a subquery. We check * each output column of the subquery and set unsafeColumns[k] to TRUE if * that column is unsafe for a pushed-down qual to reference. The conditions * checked here are: @@ -1786,7 +1786,7 @@ recurse_pushdown_safe(Node *setOp, Query *topquery, * of rows returned. (This condition is vacuous for DISTINCT, because then * there are no non-DISTINCT output columns, so we needn't check. But note * we are assuming that the qual can't distinguish values that the DISTINCT - * operator sees as equal. This is a bit shaky but we have no way to test + * operator sees as equal. This is a bit shaky but we have no way to test * for the case, and it's unlikely enough that we shouldn't refuse the * optimization just because it could theoretically happen.) */ @@ -1903,7 +1903,7 @@ qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual, /* * It would be unsafe to push down window function calls, but at least for - * the moment we could never see any in a qual anyhow. (The same applies + * the moment we could never see any in a qual anyhow. (The same applies * to aggregates, which we check for in pull_var_clause below.) */ Assert(!contain_window_function(qual)); diff --git a/src/backend/optimizer/path/clausesel.c b/src/backend/optimizer/path/clausesel.c index efeea374c27..9b657fb21fd 100644 --- a/src/backend/optimizer/path/clausesel.c +++ b/src/backend/optimizer/path/clausesel.c @@ -58,7 +58,7 @@ static void addRangeClause(RangeQueryClause **rqlist, Node *clause, * See clause_selectivity() for the meaning of the additional parameters. * * Our basic approach is to take the product of the selectivities of the - * subclauses. However, that's only right if the subclauses have independent + * subclauses. However, that's only right if the subclauses have independent * probabilities, and in reality they are often NOT independent. So, * we want to be smarter where we can. @@ -75,12 +75,12 @@ static void addRangeClause(RangeQueryClause **rqlist, Node *clause, * see that hisel is the fraction of the range below the high bound, while * losel is the fraction above the low bound; so hisel can be interpreted * directly as a 0..1 value but we need to convert losel to 1-losel before - * interpreting it as a value. Then the available range is 1-losel to hisel. + * interpreting it as a value. Then the available range is 1-losel to hisel. * However, this calculation double-excludes nulls, so really we need * hisel + losel + null_frac - 1.) * * If either selectivity is exactly DEFAULT_INEQ_SEL, we forget this equation - * and instead use DEFAULT_RANGE_INEQ_SEL. The same applies if the equation + * and instead use DEFAULT_RANGE_INEQ_SEL. The same applies if the equation * yields an impossible (negative) result. * * A free side-effect is that we can recognize redundant inequalities such @@ -174,7 +174,7 @@ clauselist_selectivity(PlannerInfo *root, { /* * If it's not a "<" or ">" operator, just merge the - * selectivity in generically. But if it's the right oprrest, + * selectivity in generically. But if it's the right oprrest, * add the clause to rqlist for later processing. */ switch (get_oprrest(expr->opno)) @@ -459,14 +459,14 @@ treat_as_join_clause(Node *clause, RestrictInfo *rinfo, * nestloop join's inner relation --- varRelid should then be the ID of the * inner relation. * - * When varRelid is 0, all variables are treated as variables. This + * When varRelid is 0, all variables are treated as variables. This * is appropriate for ordinary join clauses and restriction clauses. * * jointype is the join type, if the clause is a join clause. Pass JOIN_INNER * if the clause isn't a join clause. * * sjinfo is NULL for a non-join clause, otherwise it provides additional - * context information about the join being performed. There are some + * context information about the join being performed. There are some * special cases: * 1. For a special (not INNER) join, sjinfo is always a member of * root->join_info_list. @@ -501,7 +501,7 @@ clause_selectivity(PlannerInfo *root, /* * If the clause is marked pseudoconstant, then it will be used as a * gating qual and should not affect selectivity estimates; hence - * return 1.0. The only exception is that a constant FALSE may be + * return 1.0. The only exception is that a constant FALSE may be * taken as having selectivity 0.0, since it will surely mean no rows * out of the plan. This case is simple enough that we need not * bother caching the result. @@ -520,11 +520,11 @@ clause_selectivity(PlannerInfo *root, /* * If possible, cache the result of the selectivity calculation for - * the clause. We can cache if varRelid is zero or the clause + * the clause. We can cache if varRelid is zero or the clause * contains only vars of that relid --- otherwise varRelid will affect * the result, so mustn't cache. Outer join quals might be examined * with either their join's actual jointype or JOIN_INNER, so we need - * two cache variables to remember both cases. Note: we assume the + * two cache variables to remember both cases. Note: we assume the * result won't change if we are switching the input relations or * considering a unique-ified case, so we only need one cache variable * for all non-JOIN_INNER cases. @@ -685,7 +685,7 @@ clause_selectivity(PlannerInfo *root, /* * This is not an operator, so we guess at the selectivity. THIS IS A * HACK TO GET V4 OUT THE DOOR. FUNCS SHOULD BE ABLE TO HAVE - * SELECTIVITIES THEMSELVES. -- JMH 7/9/92 + * SELECTIVITIES THEMSELVES. -- JMH 7/9/92 */ s1 = (Selectivity) 0.3333333; } diff --git a/src/backend/optimizer/path/costsize.c b/src/backend/optimizer/path/costsize.c index 326794acb85..848065ee7b2 100644 --- a/src/backend/optimizer/path/costsize.c +++ b/src/backend/optimizer/path/costsize.c @@ -24,7 +24,7 @@ * * Obviously, taking constants for these values is an oversimplification, * but it's tough enough to get any useful estimates even at this level of - * detail. Note that all of these parameters are user-settable, in case + * detail. Note that all of these parameters are user-settable, in case * the default values are drastically off for a particular platform. * * seq_page_cost and random_page_cost can also be overridden for an individual @@ -493,7 +493,7 @@ cost_index(IndexPath *path, PlannerInfo *root, double loop_count) * computed for us by query_planner. * * Caller is expected to have ensured that tuples_fetched is greater than zero - * and rounded to integer (see clamp_row_est). The result will likewise be + * and rounded to integer (see clamp_row_est). The result will likewise be * greater than zero and integral. */ double @@ -694,7 +694,7 @@ cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel, /* * For small numbers of pages we should charge spc_random_page_cost * apiece, while if nearly all the table's pages are being read, it's more - * appropriate to charge spc_seq_page_cost apiece. The effect is + * appropriate to charge spc_seq_page_cost apiece. The effect is * nonlinear, too. For lack of a better idea, interpolate like this to * determine the cost per page. */ @@ -769,7 +769,7 @@ cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec) * Estimate the cost of a BitmapAnd node * * Note that this considers only the costs of index scanning and bitmap - * creation, not the eventual heap access. In that sense the object isn't + * creation, not the eventual heap access. In that sense the object isn't * truly a Path, but it has enough path-like properties (costs in particular) * to warrant treating it as one. We don't bother to set the path rows field, * however. @@ -828,7 +828,7 @@ cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root) /* * We estimate OR selectivity on the assumption that the inputs are * non-overlapping, since that's often the case in "x IN (list)" type - * situations. Of course, we clamp to 1.0 at the end. + * situations. Of course, we clamp to 1.0 at the end. * * The runtime cost of the BitmapOr itself is estimated at 100x * cpu_operator_cost for each tbm_union needed. Probably too small, @@ -917,7 +917,7 @@ cost_tidscan(Path *path, PlannerInfo *root, /* * We must force TID scan for WHERE CURRENT OF, because only nodeTidscan.c - * understands how to do it correctly. Therefore, honor enable_tidscan + * understands how to do it correctly. Therefore, honor enable_tidscan * only when CURRENT OF isn't present. Also note that cost_qual_eval * counts a CurrentOfExpr as having startup cost disable_cost, which we * subtract off here; that's to prevent other plan types such as seqscan @@ -1036,7 +1036,7 @@ cost_functionscan(Path *path, PlannerInfo *root, * * Currently, nodeFunctionscan.c always executes the functions to * completion before returning any rows, and caches the results in a - * tuplestore. So the function eval cost is all startup cost, and per-row + * tuplestore. So the function eval cost is all startup cost, and per-row * costs are minimal. * * XXX in principle we ought to charge tuplestore spill costs if the @@ -1108,7 +1108,7 @@ cost_valuesscan(Path *path, PlannerInfo *root, * * Note: this is used for both self-reference and regular CTEs; the * possible cost differences are below the threshold of what we could - * estimate accurately anyway. Note that the costs of evaluating the + * estimate accurately anyway. Note that the costs of evaluating the * referenced CTE query are added into the final plan as initplan costs, * and should NOT be counted here. */ @@ -1202,7 +1202,7 @@ cost_recursive_union(Plan *runion, Plan *nrterm, Plan *rterm) * If the total volume exceeds sort_mem, we switch to a tape-style merge * algorithm. There will still be about t*log2(t) tuple comparisons in * total, but we will also need to write and read each tuple once per - * merge pass. We expect about ceil(logM(r)) merge passes where r is the + * merge pass. We expect about ceil(logM(r)) merge passes where r is the * number of initial runs formed and M is the merge order used by tuplesort.c. * Since the average initial run should be about twice sort_mem, we have * disk traffic = 2 * relsize * ceil(logM(p / (2*sort_mem))) @@ -1216,7 +1216,7 @@ cost_recursive_union(Plan *runion, Plan *nrterm, Plan *rterm) * accesses (XXX can't we refine that guess?) * * By default, we charge two operator evals per tuple comparison, which should - * be in the right ballpark in most cases. The caller can tweak this by + * be in the right ballpark in most cases. The caller can tweak this by * specifying nonzero comparison_cost; typically that's used for any extra * work that has to be done to prepare the inputs to the comparison operators. * @@ -1340,7 +1340,7 @@ cost_sort(Path *path, PlannerInfo *root, * Determines and returns the cost of a MergeAppend node. * * MergeAppend merges several pre-sorted input streams, using a heap that - * at any given instant holds the next tuple from each stream. If there + * at any given instant holds the next tuple from each stream. If there * are N streams, we need about N*log2(N) tuple comparisons to construct * the heap at startup, and then for each output tuple, about log2(N) * comparisons to delete the top heap entry and another log2(N) comparisons @@ -1499,7 +1499,7 @@ cost_agg(Path *path, PlannerInfo *root, * group otherwise. We charge cpu_tuple_cost for each output tuple. * * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the - * same total CPU cost, but AGG_SORTED has lower startup cost. If the + * same total CPU cost, but AGG_SORTED has lower startup cost. If the * input path is already sorted appropriately, AGG_SORTED should be * preferred (since it has no risk of memory overflow). This will happen * as long as the computed total costs are indeed exactly equal --- but if @@ -2107,10 +2107,10 @@ initial_cost_mergejoin(PlannerInfo *root, JoinCostWorkspace *workspace, * Unlike other costsize functions, this routine makes one actual decision: * whether we should materialize the inner path. We do that either because * the inner path can't support mark/restore, or because it's cheaper to - * use an interposed Material node to handle mark/restore. When the decision + * use an interposed Material node to handle mark/restore. When the decision * is cost-based it would be logically cleaner to build and cost two separate * paths with and without that flag set; but that would require repeating most - * of the cost calculations, which are not all that cheap. Since the choice + * of the cost calculations, which are not all that cheap. Since the choice * will not affect output pathkeys or startup cost, only total cost, there is * no possibility of wanting to keep both paths. So it seems best to make * the decision here and record it in the path's materialize_inner field. @@ -2174,7 +2174,7 @@ final_cost_mergejoin(PlannerInfo *root, MergePath *path, qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple; /* - * Get approx # tuples passing the mergequals. We use approx_tuple_count + * Get approx # tuples passing the mergequals. We use approx_tuple_count * here because we need an estimate done with JOIN_INNER semantics. */ mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses); @@ -2188,7 +2188,7 @@ final_cost_mergejoin(PlannerInfo *root, MergePath *path, * estimated approximately as size of merge join output minus size of * inner relation. Assume that the distinct key values are 1, 2, ..., and * denote the number of values of each key in the outer relation as m1, - * m2, ...; in the inner relation, n1, n2, ... Then we have + * m2, ...; in the inner relation, n1, n2, ... Then we have * * size of join = m1 * n1 + m2 * n2 + ... * @@ -2199,7 +2199,7 @@ final_cost_mergejoin(PlannerInfo *root, MergePath *path, * This equation works correctly for outer tuples having no inner match * (nk = 0), but not for inner tuples having no outer match (mk = 0); we * are effectively subtracting those from the number of rescanned tuples, - * when we should not. Can we do better without expensive selectivity + * when we should not. Can we do better without expensive selectivity * computations? * * The whole issue is moot if we are working from a unique-ified outer @@ -2219,7 +2219,7 @@ final_cost_mergejoin(PlannerInfo *root, MergePath *path, /* * Decide whether we want to materialize the inner input to shield it from - * mark/restore and performing re-fetches. Our cost model for regular + * mark/restore and performing re-fetches. Our cost model for regular * re-fetches is that a re-fetch costs the same as an original fetch, * which is probably an overestimate; but on the other hand we ignore the * bookkeeping costs of mark/restore. Not clear if it's worth developing @@ -2312,7 +2312,7 @@ final_cost_mergejoin(PlannerInfo *root, MergePath *path, /* * For each tuple that gets through the mergejoin proper, we charge * cpu_tuple_cost plus the cost of evaluating additional restriction - * clauses that are to be applied at the join. (This is pessimistic since + * clauses that are to be applied at the join. (This is pessimistic since * not all of the quals may get evaluated at each tuple.) * * Note: we could adjust for SEMI/ANTI joins skipping some qual @@ -2464,7 +2464,7 @@ initial_cost_hashjoin(PlannerInfo *root, JoinCostWorkspace *workspace, * If inner relation is too big then we will need to "batch" the join, * which implies writing and reading most of the tuples to disk an extra * time. Charge seq_page_cost per page, since the I/O should be nice and - * sequential. Writing the inner rel counts as startup cost, all the rest + * sequential. Writing the inner rel counts as startup cost, all the rest * as run cost. */ if (numbatches > 1) @@ -2695,7 +2695,7 @@ final_cost_hashjoin(PlannerInfo *root, HashPath *path, /* * For each tuple that gets through the hashjoin proper, we charge * cpu_tuple_cost plus the cost of evaluating additional restriction - * clauses that are to be applied at the join. (This is pessimistic since + * clauses that are to be applied at the join. (This is pessimistic since * not all of the quals may get evaluated at each tuple.) */ startup_cost += qp_qual_cost.startup; @@ -2748,7 +2748,7 @@ cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan) { /* * Otherwise we will be rescanning the subplan output on each - * evaluation. We need to estimate how much of the output we will + * evaluation. We need to estimate how much of the output we will * actually need to scan. NOTE: this logic should agree with the * tuple_fraction estimates used by make_subplan() in * plan/subselect.c. @@ -2796,10 +2796,10 @@ cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan) /* * cost_rescan * Given a finished Path, estimate the costs of rescanning it after - * having done so the first time. For some Path types a rescan is + * having done so the first time. For some Path types a rescan is * cheaper than an original scan (if no parameters change), and this * function embodies knowledge about that. The default is to return - * the same costs stored in the Path. (Note that the cost estimates + * the same costs stored in the Path. (Note that the cost estimates * actually stored in Paths are always for first scans.) * * This function is not currently intended to model effects such as rescans @@ -2840,7 +2840,7 @@ cost_rescan(PlannerInfo *root, Path *path, { /* * These plan types materialize their final result in a - * tuplestore or tuplesort object. So the rescan cost is only + * tuplestore or tuplesort object. So the rescan cost is only * cpu_tuple_cost per tuple, unless the result is large enough * to spill to disk. */ @@ -2865,8 +2865,8 @@ cost_rescan(PlannerInfo *root, Path *path, { /* * These plan types not only materialize their results, but do - * not implement qual filtering or projection. So they are - * even cheaper to rescan than the ones above. We charge only + * not implement qual filtering or projection. So they are + * even cheaper to rescan than the ones above. We charge only * cpu_operator_cost per tuple. (Note: keep that in sync with * the run_cost charge in cost_sort, and also see comments in * cost_material before you change it.) @@ -3007,7 +3007,7 @@ cost_qual_eval_walker(Node *node, cost_qual_eval_context *context) * evaluation of AND/OR? Probably *not*, because that would make the * results depend on the clause ordering, and we are not in any position * to expect that the current ordering of the clauses is the one that's - * going to end up being used. The above per-RestrictInfo caching would + * going to end up being used. The above per-RestrictInfo caching would * not mix well with trying to re-order clauses anyway. * * Another issue that is entirely ignored here is that if a set-returning @@ -3129,7 +3129,7 @@ cost_qual_eval_walker(Node *node, cost_qual_eval_context *context) else if (IsA(node, AlternativeSubPlan)) { /* - * Arbitrarily use the first alternative plan for costing. (We should + * Arbitrarily use the first alternative plan for costing. (We should * certainly only include one alternative, and we don't yet have * enough information to know which one the executor is most likely to * use.) @@ -3273,13 +3273,13 @@ compute_semi_anti_join_factors(PlannerInfo *root, /* * jselec can be interpreted as the fraction of outer-rel rows that have * any matches (this is true for both SEMI and ANTI cases). And nselec is - * the fraction of the Cartesian product that matches. So, the average + * the fraction of the Cartesian product that matches. So, the average * number of matches for each outer-rel row that has at least one match is * nselec * inner_rows / jselec. * * Note: it is correct to use the inner rel's "rows" count here, even * though we might later be considering a parameterized inner path with - * fewer rows. This is because we have included all the join clauses in + * fewer rows. This is because we have included all the join clauses in * the selectivity estimate. */ if (jselec > 0) /* protect against zero divide */ @@ -3607,7 +3607,7 @@ calc_joinrel_size_estimate(PlannerInfo *root, double nrows; /* - * Compute joinclause selectivity. Note that we are only considering + * Compute joinclause selectivity. Note that we are only considering * clauses that become restriction clauses at this join level; we are not * double-counting them because they were not considered in estimating the * sizes of the component rels. @@ -3665,7 +3665,7 @@ calc_joinrel_size_estimate(PlannerInfo *root, * * If we are doing an outer join, take that into account: the joinqual * selectivity has to be clamped using the knowledge that the output must - * be at least as large as the non-nullable input. However, any + * be at least as large as the non-nullable input. However, any * pushed-down quals are applied after the outer join, so their * selectivity applies fully. * @@ -3736,7 +3736,7 @@ set_subquery_size_estimates(PlannerInfo *root, RelOptInfo *rel) /* * Compute per-output-column width estimates by examining the subquery's - * targetlist. For any output that is a plain Var, get the width estimate + * targetlist. For any output that is a plain Var, get the width estimate * that was made while planning the subquery. Otherwise, we leave it to * set_rel_width to fill in a datatype-based default estimate. */ @@ -3755,7 +3755,7 @@ set_subquery_size_estimates(PlannerInfo *root, RelOptInfo *rel) * The subquery could be an expansion of a view that's had columns * added to it since the current query was parsed, so that there are * non-junk tlist columns in it that don't correspond to any column - * visible at our query level. Ignore such columns. + * visible at our query level. Ignore such columns. */ if (te->resno < rel->min_attr || te->resno > rel->max_attr) continue; @@ -3904,7 +3904,7 @@ set_cte_size_estimates(PlannerInfo *root, RelOptInfo *rel, Plan *cteplan) * of estimating baserestrictcost, so we set that, and we also set up width * using what will be purely datatype-driven estimates from the targetlist. * There is no way to do anything sane with the rows value, so we just put - * a default estimate and hope that the wrapper can improve on it. The + * a default estimate and hope that the wrapper can improve on it. The * wrapper's GetForeignRelSize function will be called momentarily. * * The rel's targetlist and restrictinfo list must have been constructed @@ -4025,7 +4025,7 @@ set_rel_width(PlannerInfo *root, RelOptInfo *rel) { /* * We could be looking at an expression pulled up from a subquery, - * or a ROW() representing a whole-row child Var, etc. Do what we + * or a ROW() representing a whole-row child Var, etc. Do what we * can using the expression type information. */ int32 item_width; @@ -4132,7 +4132,7 @@ void set_default_effective_cache_size(void) { /* - * We let check_effective_cache_size() compute the actual setting. Note + * We let check_effective_cache_size() compute the actual setting. Note * that this call is a no-op if the user has supplied a setting (since * that will have a higher priority than PGC_S_DYNAMIC_DEFAULT). */ diff --git a/src/backend/optimizer/path/equivclass.c b/src/backend/optimizer/path/equivclass.c index ac12f84fd5e..b7aff3775ee 100644 --- a/src/backend/optimizer/path/equivclass.c +++ b/src/backend/optimizer/path/equivclass.c @@ -74,7 +74,7 @@ static bool reconsider_full_join_clause(PlannerInfo *root, * * If below_outer_join is true, then the clause was found below the nullable * side of an outer join, so its sides might validly be both NULL rather than - * strictly equal. We can still deduce equalities in such cases, but we take + * strictly equal. We can still deduce equalities in such cases, but we take * care to mark an EquivalenceClass if it came from any such clauses. Also, * we have to check that both sides are either pseudo-constants or strict * functions of Vars, else they might not both go to NULL above the outer @@ -141,9 +141,9 @@ process_equivalence(PlannerInfo *root, RestrictInfo *restrictinfo, collation); /* - * Reject clauses of the form X=X. These are not as redundant as they + * Reject clauses of the form X=X. These are not as redundant as they * might seem at first glance: assuming the operator is strict, this is - * really an expensive way to write X IS NOT NULL. So we must not risk + * really an expensive way to write X IS NOT NULL. So we must not risk * just losing the clause, which would be possible if there is already a * single-element EquivalenceClass containing X. The case is not common * enough to be worth contorting the EC machinery for, so just reject the @@ -187,14 +187,14 @@ process_equivalence(PlannerInfo *root, RestrictInfo *restrictinfo, * Sweep through the existing EquivalenceClasses looking for matches to * item1 and item2. These are the possible outcomes: * - * 1. We find both in the same EC. The equivalence is already known, so + * 1. We find both in the same EC. The equivalence is already known, so * there's nothing to do. * * 2. We find both in different ECs. Merge the two ECs together. * * 3. We find just one. Add the other to its EC. * - * 4. We find neither. Make a new, two-entry EC. + * 4. We find neither. Make a new, two-entry EC. * * Note: since all ECs are built through this process or the similar * search in get_eclass_for_sort_expr(), it's impossible that we'd match @@ -294,7 +294,7 @@ process_equivalence(PlannerInfo *root, RestrictInfo *restrictinfo, /* * We add ec2's items to ec1, then set ec2's ec_merged link to point - * to ec1 and remove ec2 from the eq_classes list. We cannot simply + * to ec1 and remove ec2 from the eq_classes list. We cannot simply * delete ec2 because that could leave dangling pointers in existing * PathKeys. We leave it behind with a link so that the merged EC can * be found. @@ -406,7 +406,7 @@ process_equivalence(PlannerInfo *root, RestrictInfo *restrictinfo, * Also, the expression's exposed collation must match the EC's collation. * This is important because in comparisons like "foo < bar COLLATE baz", * only one of the expressions has the correct exposed collation as we receive - * it from the parser. Forcing both of them to have it ensures that all + * it from the parser. Forcing both of them to have it ensures that all * variant spellings of such a construct behave the same. Again, we can * stick on a RelabelType to force the right exposed collation. (It might * work to not label the collation at all in EC members, but this is risky @@ -511,22 +511,22 @@ add_eq_member(EquivalenceClass *ec, Expr *expr, Relids relids, * single-member EquivalenceClass for it. * * expr is the expression, and nullable_relids is the set of base relids - * that are potentially nullable below it. We actually only care about + * that are potentially nullable below it. We actually only care about * the set of such relids that are used in the expression; but for caller * convenience, we perform that intersection step here. The caller need * only be sure that nullable_relids doesn't omit any nullable rels that * might appear in the expr. * * sortref is the SortGroupRef of the originating SortGroupClause, if any, - * or zero if not. (It should never be zero if the expression is volatile!) + * or zero if not. (It should never be zero if the expression is volatile!) * * If rel is not NULL, it identifies a specific relation we're considering * a path for, and indicates that child EC members for that relation can be - * considered. Otherwise child members are ignored. (Note: since child EC + * considered. Otherwise child members are ignored. (Note: since child EC * members aren't guaranteed unique, a non-NULL value means that there could * be more than one EC that matches the expression; if so it's order-dependent * which one you get. This is annoying but it only happens in corner cases, - * so for now we live with just reporting the first match. See also + * so for now we live with just reporting the first match. See also * generate_implied_equalities_for_column and match_pathkeys_to_index.) * * If create_it is TRUE, we'll build a new EquivalenceClass when there is no @@ -680,7 +680,7 @@ get_eclass_for_sort_expr(PlannerInfo *root, * * When an EC contains pseudoconstants, our strategy is to generate * "member = const1" clauses where const1 is the first constant member, for - * every other member (including other constants). If we are able to do this + * every other member (including other constants). If we are able to do this * then we don't need any "var = var" comparisons because we've successfully * constrained all the vars at their points of creation. If we fail to * generate any of these clauses due to lack of cross-type operators, we fall @@ -705,7 +705,7 @@ get_eclass_for_sort_expr(PlannerInfo *root, * "WHERE a.x = b.y AND b.y = a.z", the scheme breaks down if we cannot * generate "a.x = a.z" as a restriction clause for A.) In this case we mark * the EC "ec_broken" and fall back to regurgitating its original source - * RestrictInfos at appropriate times. We do not try to retract any derived + * RestrictInfos at appropriate times. We do not try to retract any derived * clauses already generated from the broken EC, so the resulting plan could * be poor due to bad selectivity estimates caused by redundant clauses. But * the correct solution to that is to fix the opfamilies ... @@ -968,8 +968,8 @@ generate_base_implied_equalities_broken(PlannerInfo *root, * built any join RelOptInfos. * * An annoying special case for parameterized scans is that the inner rel can - * be an appendrel child (an "other rel"). In this case we must generate - * appropriate clauses using child EC members. add_child_rel_equivalences + * be an appendrel child (an "other rel"). In this case we must generate + * appropriate clauses using child EC members. add_child_rel_equivalences * must already have been done for the child rel. * * The results are sufficient for use in merge, hash, and plain nestloop join @@ -983,7 +983,7 @@ generate_base_implied_equalities_broken(PlannerInfo *root, * we consider different join paths, we avoid generating multiple copies: * whenever we select a particular pair of EquivalenceMembers to join, * we check to see if the pair matches any original clause (in ec_sources) - * or previously-built clause (in ec_derives). This saves memory and allows + * or previously-built clause (in ec_derives). This saves memory and allows * re-use of information cached in RestrictInfos. * * join_relids should always equal bms_union(outer_relids, inner_rel->relids). @@ -1079,7 +1079,7 @@ generate_join_implied_equalities_normal(PlannerInfo *root, * First, scan the EC to identify member values that are computable at the * outer rel, at the inner rel, or at this relation but not in either * input rel. The outer-rel members should already be enforced equal, - * likewise for the inner-rel members. We'll need to create clauses to + * likewise for the inner-rel members. We'll need to create clauses to * enforce that any newly computable members are all equal to each other * as well as to at least one input member, plus enforce at least one * outer-rel member equal to at least one inner-rel member. @@ -1105,7 +1105,7 @@ generate_join_implied_equalities_normal(PlannerInfo *root, } /* - * First, select the joinclause if needed. We can equate any one outer + * First, select the joinclause if needed. We can equate any one outer * member to any one inner member, but we have to find a datatype * combination for which an opfamily member operator exists. If we have * choices, we prefer simple Var members (possibly with RelabelType) since @@ -1323,8 +1323,8 @@ create_join_clause(PlannerInfo *root, /* * Search to see if we already built a RestrictInfo for this pair of - * EquivalenceMembers. We can use either original source clauses or - * previously-derived clauses. The check on opno is probably redundant, + * EquivalenceMembers. We can use either original source clauses or + * previously-derived clauses. The check on opno is probably redundant, * but be safe ... */ foreach(lc, ec->ec_sources) @@ -1455,7 +1455,7 @@ create_join_clause(PlannerInfo *root, * * Outer join clauses that are marked outerjoin_delayed are special: this * condition means that one or both VARs might go to null due to a lower - * outer join. We can still push a constant through the clause, but only + * outer join. We can still push a constant through the clause, but only * if its operator is strict; and we *have to* throw the clause back into * regular joinclause processing. By keeping the strict join clause, * we ensure that any null-extended rows that are mistakenly generated due @@ -1649,7 +1649,7 @@ reconsider_outer_join_clause(PlannerInfo *root, RestrictInfo *rinfo, /* * Yes it does! Try to generate a clause INNERVAR = CONSTANT for each - * CONSTANT in the EC. Note that we must succeed with at least one + * CONSTANT in the EC. Note that we must succeed with at least one * constant before we can decide to throw away the outer-join clause. */ match = false; @@ -1938,8 +1938,8 @@ add_child_rel_equivalences(PlannerInfo *root, continue; /* - * No point in searching if parent rel not mentioned in eclass; but - * we can't tell that for sure if parent rel is itself a child. + * No point in searching if parent rel not mentioned in eclass; but we + * can't tell that for sure if parent rel is itself a child. */ if (parent_rel->reloptkind == RELOPT_BASEREL && !bms_is_subset(parent_rel->relids, cur_ec->ec_relids)) @@ -2055,7 +2055,7 @@ mutate_eclass_expressions(PlannerInfo *root, * is a redundant list of clauses equating the table/index column to each of * the other-relation values it is known to be equal to. Any one of * these clauses can be used to create a parameterized path, and there - * is no value in using more than one. (But it *is* worthwhile to create + * is no value in using more than one. (But it *is* worthwhile to create * a separate parameterized path for each one, since that leads to different * join orders.) * @@ -2102,12 +2102,12 @@ generate_implied_equalities_for_column(PlannerInfo *root, continue; /* - * Scan members, looking for a match to the target column. Note that + * Scan members, looking for a match to the target column. Note that * child EC members are considered, but only when they belong to the * target relation. (Unlike regular members, the same expression * could be a child member of more than one EC. Therefore, it's * potentially order-dependent which EC a child relation's target - * column gets matched to. This is annoying but it only happens in + * column gets matched to. This is annoying but it only happens in * corner cases, so for now we live with just reporting the first * match. See also get_eclass_for_sort_expr.) */ @@ -2186,7 +2186,7 @@ generate_implied_equalities_for_column(PlannerInfo *root, * a joinclause involving the two given relations. * * This is essentially a very cut-down version of - * generate_join_implied_equalities(). Note it's OK to occasionally say "yes" + * generate_join_implied_equalities(). Note it's OK to occasionally say "yes" * incorrectly. Hence we don't bother with details like whether the lack of a * cross-type operator might prevent the clause from actually being generated. */ @@ -2222,7 +2222,7 @@ have_relevant_eclass_joinclause(PlannerInfo *root, * OK as a possibly-overoptimistic heuristic. * * We don't test ec_has_const either, even though a const eclass won't - * generate real join clauses. This is because if we had "WHERE a.x = + * generate real join clauses. This is because if we had "WHERE a.x = * b.y and a.x = 42", it is worth considering a join between a and b, * since the join result is likely to be small even though it'll end * up being an unqualified nestloop. @@ -2279,7 +2279,7 @@ has_relevant_eclass_joinclause(PlannerInfo *root, RelOptInfo *rel1) * against the specified relation. * * This is just a heuristic test and doesn't have to be exact; it's better - * to say "yes" incorrectly than "no". Hence we don't bother with details + * to say "yes" incorrectly than "no". Hence we don't bother with details * like whether the lack of a cross-type operator might prevent the clause * from actually being generated. */ @@ -2300,7 +2300,7 @@ eclass_useful_for_merging(EquivalenceClass *eclass, /* * Note we don't test ec_broken; if we did, we'd need a separate code path - * to look through ec_sources. Checking the members anyway is OK as a + * to look through ec_sources. Checking the members anyway is OK as a * possibly-overoptimistic heuristic. */ diff --git a/src/backend/optimizer/path/indxpath.c b/src/backend/optimizer/path/indxpath.c index a912174fb00..42dcb111aeb 100644 --- a/src/backend/optimizer/path/indxpath.c +++ b/src/backend/optimizer/path/indxpath.c @@ -222,7 +222,7 @@ static Const *string_to_const(const char *str, Oid datatype); * Note: in cases involving LATERAL references in the relation's tlist, it's * possible that rel->lateral_relids is nonempty. Currently, we include * lateral_relids into the parameterization reported for each path, but don't - * take it into account otherwise. The fact that any such rels *must* be + * take it into account otherwise. The fact that any such rels *must* be * available as parameter sources perhaps should influence our choices of * index quals ... but for now, it doesn't seem worth troubling over. * In particular, comments below about "unparameterized" paths should be read @@ -270,7 +270,7 @@ create_index_paths(PlannerInfo *root, RelOptInfo *rel) match_restriction_clauses_to_index(rel, index, &rclauseset); /* - * Build index paths from the restriction clauses. These will be + * Build index paths from the restriction clauses. These will be * non-parameterized paths. Plain paths go directly to add_path(), * bitmap paths are added to bitindexpaths to be handled below. */ @@ -278,10 +278,10 @@ create_index_paths(PlannerInfo *root, RelOptInfo *rel) &bitindexpaths); /* - * Identify the join clauses that can match the index. For the moment - * we keep them separate from the restriction clauses. Note that this + * Identify the join clauses that can match the index. For the moment + * we keep them separate from the restriction clauses. Note that this * step finds only "loose" join clauses that have not been merged into - * EquivalenceClasses. Also, collect join OR clauses for later. + * EquivalenceClasses. Also, collect join OR clauses for later. */ MemSet(&jclauseset, 0, sizeof(jclauseset)); match_join_clauses_to_index(root, rel, index, @@ -343,9 +343,9 @@ create_index_paths(PlannerInfo *root, RelOptInfo *rel) /* * Likewise, if we found anything usable, generate BitmapHeapPaths for the - * most promising combinations of join bitmap index paths. Our strategy + * most promising combinations of join bitmap index paths. Our strategy * is to generate one such path for each distinct parameterization seen - * among the available bitmap index paths. This may look pretty + * among the available bitmap index paths. This may look pretty * expensive, but usually there won't be very many distinct * parameterizations. (This logic is quite similar to that in * consider_index_join_clauses, but we're working with whole paths not @@ -461,7 +461,7 @@ consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel, * * For simplicity in selecting relevant clauses, we represent each set of * outer rels as a maximum set of clause_relids --- that is, the indexed - * relation itself is also included in the relids set. considered_relids + * relation itself is also included in the relids set. considered_relids * lists all relids sets we've already tried. */ for (indexcol = 0; indexcol < index->ncolumns; indexcol++) @@ -550,7 +550,7 @@ consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel, /* * If this clause was derived from an equivalence class, the * clause list may contain other clauses derived from the same - * eclass. We should not consider that combining this clause with + * eclass. We should not consider that combining this clause with * one of those clauses generates a usefully different * parameterization; so skip if any clause derived from the same * eclass would already have been included when using oldrelids. @@ -633,9 +633,9 @@ get_join_index_paths(PlannerInfo *root, RelOptInfo *rel, } /* - * Add applicable eclass join clauses. The clauses generated for each + * Add applicable eclass join clauses. The clauses generated for each * column are redundant (cf generate_implied_equalities_for_column), - * so we need at most one. This is the only exception to the general + * so we need at most one. This is the only exception to the general * rule of using all available index clauses. */ foreach(lc, eclauseset->indexclauses[indexcol]) @@ -722,7 +722,7 @@ bms_equal_any(Relids relids, List *relids_list) * bitmap indexpaths are added to *bitindexpaths for later processing. * * This is a fairly simple frontend to build_index_paths(). Its reason for - * existence is mainly to handle ScalarArrayOpExpr quals properly. If the + * existence is mainly to handle ScalarArrayOpExpr quals properly. If the * index AM supports them natively, we should just include them in simple * index paths. If not, we should exclude them while building simple index * paths, and then make a separate attempt to include them in bitmap paths. @@ -736,7 +736,7 @@ get_index_paths(PlannerInfo *root, RelOptInfo *rel, ListCell *lc; /* - * Build simple index paths using the clauses. Allow ScalarArrayOpExpr + * Build simple index paths using the clauses. Allow ScalarArrayOpExpr * clauses only if the index AM supports them natively. */ indexpaths = build_index_paths(root, rel, @@ -748,7 +748,7 @@ get_index_paths(PlannerInfo *root, RelOptInfo *rel, * Submit all the ones that can form plain IndexScan plans to add_path. (A * plain IndexPath can represent either a plain IndexScan or an * IndexOnlyScan, but for our purposes here that distinction does not - * matter. However, some of the indexes might support only bitmap scans, + * matter. However, some of the indexes might support only bitmap scans, * and those we mustn't submit to add_path here.) * * Also, pick out the ones that are usable as bitmap scans. For that, we @@ -792,7 +792,7 @@ get_index_paths(PlannerInfo *root, RelOptInfo *rel, * We return a list of paths because (1) this routine checks some cases * that should cause us to not generate any IndexPath, and (2) in some * cases we want to consider both a forward and a backward scan, so as - * to obtain both sort orders. Note that the paths are just returned + * to obtain both sort orders. Note that the paths are just returned * to the caller and not immediately fed to add_path(). * * At top level, useful_predicate should be exactly the index's predOK flag @@ -975,7 +975,7 @@ build_index_paths(PlannerInfo *root, RelOptInfo *rel, } /* - * 3. Check if an index-only scan is possible. If we're not building + * 3. Check if an index-only scan is possible. If we're not building * plain indexscans, this isn't relevant since bitmap scans don't support * index data retrieval anyway. */ @@ -1080,13 +1080,13 @@ build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel, continue; /* - * Ignore partial indexes that do not match the query. If a partial + * Ignore partial indexes that do not match the query. If a partial * index is marked predOK then we know it's OK. Otherwise, we have to * test whether the added clauses are sufficient to imply the * predicate. If so, we can use the index in the current context. * * We set useful_predicate to true iff the predicate was proven using - * the current set of clauses. This is needed to prevent matching a + * the current set of clauses. This is needed to prevent matching a * predOK index to an arm of an OR, which would be a legal but * pointlessly inefficient plan. (A better plan will be generated by * just scanning the predOK index alone, no OR.) @@ -1256,7 +1256,7 @@ generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel, * Given a nonempty list of bitmap paths, AND them into one path. * * This is a nontrivial decision since we can legally use any subset of the - * given path set. We want to choose a good tradeoff between selectivity + * given path set. We want to choose a good tradeoff between selectivity * and cost of computing the bitmap. * * The result is either a single one of the inputs, or a BitmapAndPath @@ -1283,12 +1283,12 @@ choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths) * In theory we should consider every nonempty subset of the given paths. * In practice that seems like overkill, given the crude nature of the * estimates, not to mention the possible effects of higher-level AND and - * OR clauses. Moreover, it's completely impractical if there are a large + * OR clauses. Moreover, it's completely impractical if there are a large * number of paths, since the work would grow as O(2^N). * * As a heuristic, we first check for paths using exactly the same sets of * WHERE clauses + index predicate conditions, and reject all but the - * cheapest-to-scan in any such group. This primarily gets rid of indexes + * cheapest-to-scan in any such group. This primarily gets rid of indexes * that include the interesting columns but also irrelevant columns. (In * situations where the DBA has gone overboard on creating variant * indexes, this can make for a very large reduction in the number of @@ -1308,7 +1308,7 @@ choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths) * costsize.c and clausesel.c aren't very smart about redundant clauses. * They will usually double-count the redundant clauses, producing a * too-small selectivity that makes a redundant AND step look like it - * reduces the total cost. Perhaps someday that code will be smarter and + * reduces the total cost. Perhaps someday that code will be smarter and * we can remove this limitation. (But note that this also defends * against flat-out duplicate input paths, which can happen because * match_join_clauses_to_index will find the same OR join clauses that @@ -1316,7 +1316,7 @@ choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths) * of.) * * For the same reason, we reject AND combinations in which an index - * predicate clause duplicates another clause. Here we find it necessary + * predicate clause duplicates another clause. Here we find it necessary * to be even stricter: we'll reject a partial index if any of its * predicate clauses are implied by the set of WHERE clauses and predicate * clauses used so far. This covers cases such as a condition "x = 42" @@ -1379,7 +1379,7 @@ choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths) /* * For each surviving index, consider it as an "AND group leader", and see * whether adding on any of the later indexes results in an AND path with - * cheaper total cost than before. Then take the cheapest AND group. + * cheaper total cost than before. Then take the cheapest AND group. */ for (i = 0; i < npaths; i++) { @@ -1711,7 +1711,7 @@ find_indexpath_quals(Path *bitmapqual, List **quals, List **preds) /* * find_list_position * Return the given node's position (counting from 0) in the given - * list of nodes. If it's not equal() to any existing list member, + * list of nodes. If it's not equal() to any existing list member, * add it at the end, and return that position. */ static int @@ -1817,7 +1817,7 @@ check_index_only(RelOptInfo *rel, IndexOptInfo *index) * Since we produce parameterized paths before we've begun to generate join * relations, it's impossible to predict exactly how many times a parameterized * path will be iterated; we don't know the size of the relation that will be - * on the outside of the nestloop. However, we should try to account for + * on the outside of the nestloop. However, we should try to account for * multiple iterations somehow in costing the path. The heuristic embodied * here is to use the rowcount of the smallest other base relation needed in * the join clauses used by the path. (We could alternatively consider the @@ -2032,7 +2032,7 @@ match_clause_to_index(IndexOptInfo *index, * doesn't involve a volatile function or a Var of the index's relation. * In particular, Vars belonging to other relations of the query are * accepted here, since a clause of that form can be used in a - * parameterized indexscan. It's the responsibility of higher code levels + * parameterized indexscan. It's the responsibility of higher code levels * to manage restriction and join clauses appropriately. * * Note: we do need to check for Vars of the index's relation on the @@ -2056,7 +2056,7 @@ match_clause_to_index(IndexOptInfo *index, * It is also possible to match RowCompareExpr clauses to indexes (but * currently, only btree indexes handle this). In this routine we will * report a match if the first column of the row comparison matches the - * target index column. This is sufficient to guarantee that some index + * target index column. This is sufficient to guarantee that some index * condition can be constructed from the RowCompareExpr --- whether the * remaining columns match the index too is considered in * adjust_rowcompare_for_index(). @@ -2094,7 +2094,7 @@ match_clause_to_indexcol(IndexOptInfo *index, bool plain_op; /* - * Never match pseudoconstants to indexes. (Normally this could not + * Never match pseudoconstants to indexes. (Normally this could not * happen anyway, since a pseudoconstant clause couldn't contain a Var, * but what if someone builds an expression index on a constant? It's not * totally unreasonable to do so with a partial index, either.) @@ -2378,7 +2378,7 @@ match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys, * We allow any column of the index to match each pathkey; they * don't have to match left-to-right as you might expect. This is * correct for GiST, which is the sole existing AM supporting - * amcanorderbyop. We might need different logic in future for + * amcanorderbyop. We might need different logic in future for * other implementations. */ for (indexcol = 0; indexcol < index->ncolumns; indexcol++) @@ -2429,7 +2429,7 @@ match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys, * Note that we currently do not consider the collation of the ordering * operator's result. In practical cases the result type will be numeric * and thus have no collation, and it's not very clear what to match to - * if it did have a collation. The index's collation should match the + * if it did have a collation. The index's collation should match the * ordering operator's input collation, not its result. * * If successful, return 'clause' as-is if the indexkey is on the left, @@ -2679,7 +2679,7 @@ ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel, * if it is true. * 2. A list of expressions in this relation, and a corresponding list of * equality operators. The caller must have already checked that the operators - * represent equality. (Note: the operators could be cross-type; the + * represent equality. (Note: the operators could be cross-type; the * expressions should correspond to their RHS inputs.) * * The caller need only supply equality conditions arising from joins; @@ -2868,7 +2868,7 @@ match_index_to_operand(Node *operand, int indkey; /* - * Ignore any RelabelType node above the operand. This is needed to be + * Ignore any RelabelType node above the operand. This is needed to be * able to apply indexscanning in binary-compatible-operator cases. Note: * we can assume there is at most one RelabelType node; * eval_const_expressions() will have simplified if more than one. @@ -2935,10 +2935,10 @@ match_index_to_operand(Node *operand, * indexscan machinery. The key idea is that these operators allow us * to derive approximate indexscan qual clauses, such that any tuples * that pass the operator clause itself must also satisfy the simpler - * indexscan condition(s). Then we can use the indexscan machinery + * indexscan condition(s). Then we can use the indexscan machinery * to avoid scanning as much of the table as we'd otherwise have to, * while applying the original operator as a qpqual condition to ensure - * we deliver only the tuples we want. (In essence, we're using a regular + * we deliver only the tuples we want. (In essence, we're using a regular * index as if it were a lossy index.) * * An example of what we're doing is @@ -2952,7 +2952,7 @@ match_index_to_operand(Node *operand, * * Another thing that we do with this machinery is to provide special * smarts for "boolean" indexes (that is, indexes on boolean columns - * that support boolean equality). We can transform a plain reference + * that support boolean equality). We can transform a plain reference * to the indexkey into "indexkey = true", or "NOT indexkey" into * "indexkey = false", so as to make the expression indexable using the * regular index operators. (As of Postgres 8.1, we must do this here @@ -3374,7 +3374,7 @@ expand_indexqual_opclause(RestrictInfo *rinfo, Oid opfamily, Oid idxcollation) /* * LIKE and regex operators are not members of any btree index opfamily, * but they can be members of opfamilies for more exotic index types such - * as GIN. Therefore, we should only do expansion if the operator is + * as GIN. Therefore, we should only do expansion if the operator is * actually not in the opfamily. But checking that requires a syscache * lookup, so it's best to first see if the operator is one we are * interested in. @@ -3492,7 +3492,7 @@ expand_indexqual_rowcompare(RestrictInfo *rinfo, * column matches) or a simple OpExpr (if the first-column match is all * there is). In these cases the modified clause is always "<=" or ">=" * even when the original was "<" or ">" --- this is necessary to match all - * the rows that could match the original. (We are essentially building a + * the rows that could match the original. (We are essentially building a * lossy version of the row comparison when we do this.) * * *indexcolnos receives an integer list of the index column numbers (zero diff --git a/src/backend/optimizer/path/joinpath.c b/src/backend/optimizer/path/joinpath.c index a9961161dbc..be54f3de0ba 100644 --- a/src/backend/optimizer/path/joinpath.c +++ b/src/backend/optimizer/path/joinpath.c @@ -107,7 +107,7 @@ add_paths_to_joinrel(PlannerInfo *root, /* * If it's SEMI or ANTI join, compute correction factors for cost - * estimation. These will be the same for all paths. + * estimation. These will be the same for all paths. */ if (jointype == JOIN_SEMI || jointype == JOIN_ANTI) compute_semi_anti_join_factors(root, outerrel, innerrel, @@ -122,7 +122,7 @@ add_paths_to_joinrel(PlannerInfo *root, * to the parameter source rel instead of joining to the other input rel. * This restriction reduces the number of parameterized paths we have to * deal with at higher join levels, without compromising the quality of - * the resulting plan. We express the restriction as a Relids set that + * the resulting plan. We express the restriction as a Relids set that * must overlap the parameterization of any proposed join path. */ foreach(lc, root->join_info_list) @@ -155,7 +155,7 @@ add_paths_to_joinrel(PlannerInfo *root, * However, when a LATERAL subquery is involved, we have to be a bit * laxer, because there will simply not be any paths for the joinrel that * aren't parameterized by whatever the subquery is parameterized by, - * unless its parameterization is resolved within the joinrel. Hence, add + * unless its parameterization is resolved within the joinrel. Hence, add * to param_source_rels anything that is laterally referenced in either * input and is not in the join already. */ @@ -208,7 +208,7 @@ add_paths_to_joinrel(PlannerInfo *root, /* * 1. Consider mergejoin paths where both relations must be explicitly - * sorted. Skip this if we can't mergejoin. + * sorted. Skip this if we can't mergejoin. */ if (mergejoin_allowed) sort_inner_and_outer(root, joinrel, outerrel, innerrel, @@ -233,7 +233,7 @@ add_paths_to_joinrel(PlannerInfo *root, /* * 3. Consider paths where the inner relation need not be explicitly - * sorted. This includes mergejoins only (nestloops were already built in + * sorted. This includes mergejoins only (nestloops were already built in * match_unsorted_outer). * * Diked out as redundant 2/13/2000 -- tgl. There isn't any really @@ -507,7 +507,7 @@ try_hashjoin_path(PlannerInfo *root, * We already know that the clause is a binary opclause referencing only the * rels in the current join. The point here is to check whether it has the * form "outerrel_expr op innerrel_expr" or "innerrel_expr op outerrel_expr", - * rather than mixing outer and inner vars on either side. If it matches, + * rather than mixing outer and inner vars on either side. If it matches, * we set the transient flag outer_is_left to identify which side is which. */ static inline bool @@ -572,7 +572,7 @@ sort_inner_and_outer(PlannerInfo *root, * sort. * * This function intentionally does not consider parameterized input - * paths, except when the cheapest-total is parameterized. If we did so, + * paths, except when the cheapest-total is parameterized. If we did so, * we'd have a combinatorial explosion of mergejoin paths of dubious * value. This interacts with decisions elsewhere that also discriminate * against mergejoins with parameterized inputs; see comments in @@ -619,7 +619,7 @@ sort_inner_and_outer(PlannerInfo *root, * * Actually, it's not quite true that every mergeclause ordering will * generate a different path order, because some of the clauses may be - * partially redundant (refer to the same EquivalenceClasses). Therefore, + * partially redundant (refer to the same EquivalenceClasses). Therefore, * what we do is convert the mergeclause list to a list of canonical * pathkeys, and then consider different orderings of the pathkeys. * @@ -713,7 +713,7 @@ sort_inner_and_outer(PlannerInfo *root, * cheapest-total inner-indexscan path (if any), and one on the * cheapest-startup inner-indexscan path (if different). * - * We also consider mergejoins if mergejoin clauses are available. We have + * We also consider mergejoins if mergejoin clauses are available. We have * two ways to generate the inner path for a mergejoin: sort the cheapest * inner path, or use an inner path that is already suitably ordered for the * merge. If we have several mergeclauses, it could be that there is no inner @@ -845,8 +845,8 @@ match_unsorted_outer(PlannerInfo *root, /* * If we need to unique-ify the outer path, it's pointless to consider - * any but the cheapest outer. (XXX we don't consider parameterized - * outers, nor inners, for unique-ified cases. Should we?) + * any but the cheapest outer. (XXX we don't consider parameterized + * outers, nor inners, for unique-ified cases. Should we?) */ if (save_jointype == JOIN_UNIQUE_OUTER) { @@ -887,7 +887,7 @@ match_unsorted_outer(PlannerInfo *root, { /* * Consider nestloop joins using this outer path and various - * available paths for the inner relation. We consider the + * available paths for the inner relation. We consider the * cheapest-total paths for each available parameterization of the * inner relation, including the unparameterized case. */ @@ -1042,7 +1042,7 @@ match_unsorted_outer(PlannerInfo *root, /* * Look for an inner path ordered well enough for the first - * 'sortkeycnt' innersortkeys. NB: trialsortkeys list is modified + * 'sortkeycnt' innersortkeys. NB: trialsortkeys list is modified * destructively, which is why we made a copy... */ trialsortkeys = list_truncate(trialsortkeys, sortkeycnt); diff --git a/src/backend/optimizer/path/joinrels.c b/src/backend/optimizer/path/joinrels.c index 05eaef525d5..610892890f5 100644 --- a/src/backend/optimizer/path/joinrels.c +++ b/src/backend/optimizer/path/joinrels.c @@ -213,7 +213,7 @@ join_search_one_level(PlannerInfo *root, int level) /*---------- * When special joins are involved, there may be no legal way - * to make an N-way join for some values of N. For example consider + * to make an N-way join for some values of N. For example consider * * SELECT ... FROM t1 WHERE * x IN (SELECT ... FROM t2,t3 WHERE ...) AND @@ -337,7 +337,7 @@ join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, ListCell *l; /* - * Ensure output params are set on failure return. This is just to + * Ensure output params are set on failure return. This is just to * suppress uninitialized-variable warnings from overly anal compilers. */ *sjinfo_p = NULL; @@ -345,7 +345,7 @@ join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, /* * If we have any special joins, the proposed join might be illegal; and - * in any case we have to determine its join type. Scan the join info + * in any case we have to determine its join type. Scan the join info * list for conflicts. */ match_sjinfo = NULL; @@ -609,7 +609,7 @@ make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2) /* * If it's a plain inner join, then we won't have found anything in - * join_info_list. Make up a SpecialJoinInfo so that selectivity + * join_info_list. Make up a SpecialJoinInfo so that selectivity * estimation functions will know what's being joined. */ if (sjinfo == NULL) @@ -916,7 +916,7 @@ have_join_order_restriction(PlannerInfo *root, * * Essentially, this tests whether have_join_order_restriction() could * succeed with this rel and some other one. It's OK if we sometimes - * say "true" incorrectly. (Therefore, we don't bother with the relatively + * say "true" incorrectly. (Therefore, we don't bother with the relatively * expensive has_legal_joinclause test.) */ static bool @@ -1027,7 +1027,7 @@ is_dummy_rel(RelOptInfo *rel) * dummy. * * Also, when called during GEQO join planning, we are in a short-lived - * memory context. We must make sure that the dummy path attached to a + * memory context. We must make sure that the dummy path attached to a * baserel survives the GEQO cycle, else the baserel is trashed for future * GEQO cycles. On the other hand, when we are marking a joinrel during GEQO, * we don't want the dummy path to clutter the main planning context. Upshot diff --git a/src/backend/optimizer/path/pathkeys.c b/src/backend/optimizer/path/pathkeys.c index 9179c61cbdb..5d953dfb45a 100644 --- a/src/backend/optimizer/path/pathkeys.c +++ b/src/backend/optimizer/path/pathkeys.c @@ -46,7 +46,7 @@ static bool right_merge_direction(PlannerInfo *root, PathKey *pathkey); * entry if there's not one already. * * Note that this function must not be used until after we have completed - * merging EquivalenceClasses. (We don't try to enforce that here; instead, + * merging EquivalenceClasses. (We don't try to enforce that here; instead, * equivclass.c will complain if a merge occurs after root->canon_pathkeys * has become nonempty.) */ @@ -120,7 +120,7 @@ make_canonical_pathkey(PlannerInfo *root, * * Both the given pathkey and the list members must be canonical for this * to work properly, but that's okay since we no longer ever construct any - * non-canonical pathkeys. (Note: the notion of a pathkey *list* being + * non-canonical pathkeys. (Note: the notion of a pathkey *list* being * canonical includes the additional requirement of no redundant entries, * which is exactly what we are checking for here.) * @@ -162,7 +162,7 @@ pathkey_is_redundant(PathKey *new_pathkey, List *pathkeys) * * If rel is not NULL, it identifies a specific relation we're considering * a path for, and indicates that child EC members for that relation can be - * considered. Otherwise child members are ignored. (See the comments for + * considered. Otherwise child members are ignored. (See the comments for * get_eclass_for_sort_expr.) * * create_it is TRUE if we should create any missing EquivalenceClass @@ -192,7 +192,7 @@ make_pathkey_from_sortinfo(PlannerInfo *root, /* * EquivalenceClasses need to contain opfamily lists based on the family * membership of mergejoinable equality operators, which could belong to - * more than one opfamily. So we have to look up the opfamily's equality + * more than one opfamily. So we have to look up the opfamily's equality * operator and get its membership. */ equality_op = get_opfamily_member(opfamily, @@ -355,7 +355,7 @@ get_cheapest_path_for_pathkeys(List *paths, List *pathkeys, /* * Since cost comparison is a lot cheaper than pathkey comparison, do - * that first. (XXX is that still true?) + * that first. (XXX is that still true?) */ if (matched_path != NULL && compare_path_costs(matched_path, path, cost_criterion) <= 0) @@ -397,7 +397,7 @@ get_cheapest_fractional_path_for_pathkeys(List *paths, /* * Since cost comparison is a lot cheaper than pathkey comparison, do - * that first. (XXX is that still true?) + * that first. (XXX is that still true?) */ if (matched_path != NULL && compare_fractional_path_costs(matched_path, path, fraction) <= 0) @@ -555,7 +555,7 @@ build_expression_pathkey(PlannerInfo *root, /* * convert_subquery_pathkeys * Build a pathkeys list that describes the ordering of a subquery's - * result, in the terms of the outer query. This is essentially a + * result, in the terms of the outer query. This is essentially a * task of conversion. * * 'rel': outer query's RelOptInfo for the subquery relation. @@ -608,7 +608,7 @@ convert_subquery_pathkeys(PlannerInfo *root, RelOptInfo *rel, /* * Note: it might look funny to be setting sortref = 0 for a - * reference to a volatile sub_eclass. However, the + * reference to a volatile sub_eclass. However, the * expression is *not* volatile in the outer query: it's just * a Var referencing whatever the subquery emitted. (IOW, the * outer query isn't going to re-execute the volatile @@ -645,7 +645,7 @@ convert_subquery_pathkeys(PlannerInfo *root, RelOptInfo *rel, /* * Otherwise, the sub_pathkey's EquivalenceClass could contain * multiple elements (representing knowledge that multiple items - * are effectively equal). Each element might match none, one, or + * are effectively equal). Each element might match none, one, or * more of the output columns that are visible to the outer query. * This means we may have multiple possible representations of the * sub_pathkey in the context of the outer query. Ideally we @@ -873,7 +873,7 @@ make_pathkeys_for_sortclauses(PlannerInfo *root, * right sides. * * Note this is called before EC merging is complete, so the links won't - * necessarily point to canonical ECs. Before they are actually used for + * necessarily point to canonical ECs. Before they are actually used for * anything, update_mergeclause_eclasses must be called to ensure that * they've been updated to point to canonical ECs. */ @@ -1007,7 +1007,7 @@ find_mergeclauses_for_pathkeys(PlannerInfo *root, * It's possible that multiple matching clauses might have different * ECs on the other side, in which case the order we put them into our * result makes a difference in the pathkeys required for the other - * input path. However this routine hasn't got any info about which + * input path. However this routine hasn't got any info about which * order would be best, so we don't worry about that. * * It's also possible that the selected mergejoin clauses produce @@ -1038,7 +1038,7 @@ find_mergeclauses_for_pathkeys(PlannerInfo *root, /* * If we didn't find a mergeclause, we're done --- any additional - * sort-key positions in the pathkeys are useless. (But we can still + * sort-key positions in the pathkeys are useless. (But we can still * mergejoin if we found at least one mergeclause.) */ if (matched_restrictinfos == NIL) @@ -1070,7 +1070,7 @@ find_mergeclauses_for_pathkeys(PlannerInfo *root, * Returns a pathkeys list that can be applied to the outer relation. * * Since we assume here that a sort is required, there is no particular use - * in matching any available ordering of the outerrel. (joinpath.c has an + * in matching any available ordering of the outerrel. (joinpath.c has an * entirely separate code path for considering sort-free mergejoins.) Rather, * it's interesting to try to match the requested query_pathkeys so that a * second output sort may be avoided; and failing that, we try to list "more @@ -1401,7 +1401,7 @@ pathkeys_useful_for_merging(PlannerInfo *root, RelOptInfo *rel, List *pathkeys) /* * If we didn't find a mergeclause, we're done --- any additional - * sort-key positions in the pathkeys are useless. (But we can still + * sort-key positions in the pathkeys are useless. (But we can still * mergejoin if we found at least one mergeclause.) */ if (matched) @@ -1431,7 +1431,7 @@ right_merge_direction(PlannerInfo *root, PathKey *pathkey) pathkey->pk_opfamily == query_pathkey->pk_opfamily) { /* - * Found a matching query sort column. Prefer this pathkey's + * Found a matching query sort column. Prefer this pathkey's * direction iff it matches. Note that we ignore pk_nulls_first, * which means that a sort might be needed anyway ... but we still * want to prefer only one of the two possible directions, and we @@ -1507,13 +1507,13 @@ truncate_useless_pathkeys(PlannerInfo *root, * useful according to truncate_useless_pathkeys(). * * This is a cheap test that lets us skip building pathkeys at all in very - * simple queries. It's OK to err in the direction of returning "true" when + * simple queries. It's OK to err in the direction of returning "true" when * there really aren't any usable pathkeys, but erring in the other direction * is bad --- so keep this in sync with the routines above! * * We could make the test more complex, for example checking to see if any of * the joinclauses are really mergejoinable, but that likely wouldn't win - * often enough to repay the extra cycles. Queries with neither a join nor + * often enough to repay the extra cycles. Queries with neither a join nor * a sort are reasonably common, though, so this much work seems worthwhile. */ bool diff --git a/src/backend/optimizer/path/tidpath.c b/src/backend/optimizer/path/tidpath.c index a751a7d36cd..a31d67493bb 100644 --- a/src/backend/optimizer/path/tidpath.c +++ b/src/backend/optimizer/path/tidpath.c @@ -19,7 +19,7 @@ * representation all the way through to execution. * * There is currently no special support for joins involving CTID; in - * particular nothing corresponding to best_inner_indexscan(). Since it's + * particular nothing corresponding to best_inner_indexscan(). Since it's * not very useful to store TIDs of one table in another table, there * doesn't seem to be enough use-case to justify adding a lot of code * for that. @@ -57,7 +57,7 @@ static List *TidQualFromRestrictinfo(List *restrictinfo, int varno); * or * pseudoconstant = CTID * - * We check that the CTID Var belongs to relation "varno". That is probably + * We check that the CTID Var belongs to relation "varno". That is probably * redundant considering this is only applied to restriction clauses, but * let's be safe. */ diff --git a/src/backend/optimizer/plan/analyzejoins.c b/src/backend/optimizer/plan/analyzejoins.c index 523a1e75f89..129fc3dfae6 100644 --- a/src/backend/optimizer/plan/analyzejoins.c +++ b/src/backend/optimizer/plan/analyzejoins.c @@ -40,7 +40,7 @@ static List *remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved); * Check for relations that don't actually need to be joined at all, * and remove them from the query. * - * We are passed the current joinlist and return the updated list. Other + * We are passed the current joinlist and return the updated list. Other * data structures that have to be updated are accessible via "root". */ List * @@ -90,7 +90,7 @@ restart: * Restart the scan. This is necessary to ensure we find all * removable joins independently of ordering of the join_info_list * (note that removal of attr_needed bits may make a join appear - * removable that did not before). Also, since we just deleted the + * removable that did not before). Also, since we just deleted the * current list cell, we'd have to have some kluge to continue the * list scan anyway. */ @@ -107,7 +107,7 @@ restart: * We already know that the clause is a binary opclause referencing only the * rels in the current join. The point here is to check whether it has the * form "outerrel_expr op innerrel_expr" or "innerrel_expr op outerrel_expr", - * rather than mixing outer and inner vars on either side. If it matches, + * rather than mixing outer and inner vars on either side. If it matches, * we set the transient flag outer_is_left to identify which side is which. */ static inline bool @@ -154,7 +154,7 @@ join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo) /* * Currently, we only know how to remove left joins to a baserel with - * unique indexes. We can check most of these criteria pretty trivially + * unique indexes. We can check most of these criteria pretty trivially * to avoid doing useless extra work. But checking whether any of the * indexes are unique would require iterating over the indexlist, so for * now we just make sure there are indexes of some sort or other. If none @@ -203,7 +203,7 @@ join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo) * actually references some inner-rel attributes; but the correct check * for that is relatively expensive, so we first check against ph_eval_at, * which must mention the inner rel if the PHV uses any inner-rel attrs as - * non-lateral references. Note that if the PHV's syntactic scope is just + * non-lateral references. Note that if the PHV's syntactic scope is just * the inner rel, we can't drop the rel even if the PHV is variable-free. */ foreach(l, root->placeholder_list) diff --git a/src/backend/optimizer/plan/createplan.c b/src/backend/optimizer/plan/createplan.c index 784805fbf43..4b641a2ca1f 100644 --- a/src/backend/optimizer/plan/createplan.c +++ b/src/backend/optimizer/plan/createplan.c @@ -171,7 +171,7 @@ static Material *make_material(Plan *lefttree); /* * create_plan * Creates the access plan for a query by recursively processing the - * desired tree of pathnodes, starting at the node 'best_path'. For + * desired tree of pathnodes, starting at the node 'best_path'. For * every pathnode found, we create a corresponding plan node containing * appropriate id, target list, and qualification information. * @@ -286,7 +286,7 @@ create_scan_plan(PlannerInfo *root, Path *best_path) /* * For table scans, rather than using the relation targetlist (which is * only those Vars actually needed by the query), we prefer to generate a - * tlist containing all Vars in order. This will allow the executor to + * tlist containing all Vars in order. This will allow the executor to * optimize away projection of the table tuples, if possible. (Note that * planner.c may replace the tlist we generate here, forcing projection to * occur.) @@ -523,7 +523,7 @@ use_physical_tlist(PlannerInfo *root, RelOptInfo *rel) * * If the plan node immediately above a scan would prefer to get only * needed Vars and not a physical tlist, it must call this routine to - * undo the decision made by use_physical_tlist(). Currently, Hash, Sort, + * undo the decision made by use_physical_tlist(). Currently, Hash, Sort, * and Material nodes want this, so they don't have to store useless columns. */ static void @@ -654,7 +654,7 @@ create_join_plan(PlannerInfo *root, JoinPath *best_path) /* * * Expensive function pullups may have pulled local predicates * into - * this path node. Put them in the qpqual of the plan node. * JMH, + * this path node. Put them in the qpqual of the plan node. * JMH, * 6/15/92 */ if (get_loc_restrictinfo(best_path) != NIL) @@ -1170,10 +1170,10 @@ create_indexscan_plan(PlannerInfo *root, /* * The qpqual list must contain all restrictions not automatically handled * by the index, other than pseudoconstant clauses which will be handled - * by a separate gating plan node. All the predicates in the indexquals + * by a separate gating plan node. All the predicates in the indexquals * will be checked (either by the index itself, or by nodeIndexscan.c), * but if there are any "special" operators involved then they must be - * included in qpqual. The upshot is that qpqual must contain + * included in qpqual. The upshot is that qpqual must contain * scan_clauses minus whatever appears in indexquals. * * In normal cases simple pointer equality checks will be enough to spot @@ -1310,15 +1310,15 @@ create_bitmap_scan_plan(PlannerInfo *root, /* * The qpqual list must contain all restrictions not automatically handled * by the index, other than pseudoconstant clauses which will be handled - * by a separate gating plan node. All the predicates in the indexquals + * by a separate gating plan node. All the predicates in the indexquals * will be checked (either by the index itself, or by * nodeBitmapHeapscan.c), but if there are any "special" operators - * involved then they must be added to qpqual. The upshot is that qpqual + * involved then they must be added to qpqual. The upshot is that qpqual * must contain scan_clauses minus whatever appears in indexquals. * * This loop is similar to the comparable code in create_indexscan_plan(), * but with some differences because it has to compare the scan clauses to - * stripped (no RestrictInfos) indexquals. See comments there for more + * stripped (no RestrictInfos) indexquals. See comments there for more * info. * * In normal cases simple equal() checks will be enough to spot duplicate @@ -1363,7 +1363,7 @@ create_bitmap_scan_plan(PlannerInfo *root, /* * When dealing with special operators, we will at this point have - * duplicate clauses in qpqual and bitmapqualorig. We may as well drop + * duplicate clauses in qpqual and bitmapqualorig. We may as well drop * 'em from bitmapqualorig, since there's no point in making the tests * twice. */ @@ -1475,7 +1475,7 @@ create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, /* * Here, we only detect qual-free subplans. A qual-free subplan would * cause us to generate "... OR true ..." which we may as well reduce - * to just "true". We do not try to eliminate redundant subclauses + * to just "true". We do not try to eliminate redundant subclauses * because (a) it's not as likely as in the AND case, and (b) we might * well be working with hundreds or even thousands of OR conditions, * perhaps from a long IN list. The performance of list_append_unique @@ -1571,7 +1571,7 @@ create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, /* * We know that the index predicate must have been implied by the * query condition as a whole, but it may or may not be implied by - * the conditions that got pushed into the bitmapqual. Avoid + * the conditions that got pushed into the bitmapqual. Avoid * generating redundant conditions. */ if (!predicate_implied_by(list_make1(pred), ipath->indexclauses)) @@ -1954,14 +1954,14 @@ create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path, Assert(rte->rtekind == RTE_RELATION); /* - * Sort clauses into best execution order. We do this first since the FDW + * Sort clauses into best execution order. We do this first since the FDW * might have more info than we do and wish to adjust the ordering. */ scan_clauses = order_qual_clauses(root, scan_clauses); /* * Let the FDW perform its processing on the restriction clauses and - * generate the plan node. Note that the FDW might remove restriction + * generate the plan node. Note that the FDW might remove restriction * clauses that it intends to execute remotely, or even add more (if it * has selected some join clauses for remote use but also wants them * rechecked locally). @@ -2615,7 +2615,7 @@ replace_nestloop_params_mutator(Node *node, PlannerInfo *root) * * Note that after doing this, we might have different * representations of the contents of the same PHV in different - * parts of the plan tree. This is OK because equal() will just + * parts of the plan tree. This is OK because equal() will just * match on phid/phlevelsup, so setrefs.c will still recognize an * upper-level reference to a lower-level copy of the same PHV. */ @@ -2793,7 +2793,7 @@ fix_indexqual_references(PlannerInfo *root, IndexPath *index_path) /* * Check to see if the indexkey is on the right; if so, commute - * the clause. The indexkey should be the side that refers to + * the clause. The indexkey should be the side that refers to * (only) the base relation. */ if (!bms_equal(rinfo->left_relids, index->rel->relids)) @@ -2887,7 +2887,7 @@ fix_indexqual_references(PlannerInfo *root, IndexPath *index_path) * * This is a simplified version of fix_indexqual_references. The input does * not have RestrictInfo nodes, and we assume that indxpath.c already - * commuted the clauses to put the index keys on the left. Also, we don't + * commuted the clauses to put the index keys on the left. Also, we don't * bother to support any cases except simple OpExprs, since nothing else * is allowed for ordering operators. */ @@ -3126,7 +3126,7 @@ order_qual_clauses(PlannerInfo *root, List *clauses) /* * Sort. We don't use qsort() because it's not guaranteed stable for - * equal keys. The expected number of entries is small enough that a + * equal keys. The expected number of entries is small enough that a * simple insertion sort should be good enough. */ for (i = 1; i < nitems; i++) @@ -3771,7 +3771,7 @@ make_sort(PlannerInfo *root, Plan *lefttree, int numCols, * prepare_sort_from_pathkeys * Prepare to sort according to given pathkeys * - * This is used to set up for both Sort and MergeAppend nodes. It calculates + * This is used to set up for both Sort and MergeAppend nodes. It calculates * the executor's representation of the sort key information, and adjusts the * plan targetlist if needed to add resjunk sort columns. * @@ -3784,7 +3784,7 @@ make_sort(PlannerInfo *root, Plan *lefttree, int numCols, * * We must convert the pathkey information into arrays of sort key column * numbers, sort operator OIDs, collation OIDs, and nulls-first flags, - * which is the representation the executor wants. These are returned into + * which is the representation the executor wants. These are returned into * the output parameters *p_numsortkeys etc. * * When looking for matches to an EquivalenceClass's members, we will only @@ -4229,7 +4229,7 @@ make_material(Plan *lefttree) * materialize_finished_plan: stick a Material node atop a completed plan * * There are a couple of places where we want to attach a Material node - * after completion of subquery_planner(). This currently requires hackery. + * after completion of subquery_planner(). This currently requires hackery. * Since subquery_planner has already run SS_finalize_plan on the subplan * tree, we have to kluge up parameter lists for the Material node. * Possibly this could be fixed by postponing SS_finalize_plan processing @@ -4435,7 +4435,7 @@ make_group(PlannerInfo *root, /* * distinctList is a list of SortGroupClauses, identifying the targetlist items - * that should be considered by the Unique filter. The input path must + * that should be considered by the Unique filter. The input path must * already be sorted accordingly. */ Unique * @@ -4453,7 +4453,7 @@ make_unique(Plan *lefttree, List *distinctList) /* * Charge one cpu_operator_cost per comparison per input tuple. We assume - * all columns get compared at most of the tuples. (XXX probably this is + * all columns get compared at most of the tuples. (XXX probably this is * an overestimate.) */ plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols; diff --git a/src/backend/optimizer/plan/initsplan.c b/src/backend/optimizer/plan/initsplan.c index b57bfd21760..f88e493edb8 100644 --- a/src/backend/optimizer/plan/initsplan.c +++ b/src/backend/optimizer/plan/initsplan.c @@ -87,12 +87,12 @@ static void check_hashjoinable(RestrictInfo *restrictinfo); * appearing in the jointree. * * The initial invocation must pass root->parse->jointree as the value of - * jtnode. Internally, the function recurses through the jointree. + * jtnode. Internally, the function recurses through the jointree. * * At the end of this process, there should be one baserel RelOptInfo for * every non-join RTE that is used in the query. Therefore, this routine * is the only place that should call build_simple_rel with reloptkind - * RELOPT_BASEREL. (Note: build_simple_rel recurses internally to build + * RELOPT_BASEREL. (Note: build_simple_rel recurses internally to build * "other rel" RelOptInfos for the members of any appendrels we find here.) */ void @@ -234,10 +234,10 @@ add_vars_to_targetlist(PlannerInfo *root, List *vars, * means setting suitable where_needed values for them. * * Note that this only deals with lateral references in unflattened LATERAL - * subqueries. When we flatten a LATERAL subquery, its lateral references + * subqueries. When we flatten a LATERAL subquery, its lateral references * become plain Vars in the parent query, but they may have to be wrapped in * PlaceHolderVars if they need to be forced NULL by outer joins that don't - * also null the LATERAL subquery. That's all handled elsewhere. + * also null the LATERAL subquery. That's all handled elsewhere. * * This has to run before deconstruct_jointree, since it might result in * creation of PlaceHolderInfos. @@ -360,7 +360,7 @@ extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex) /* * We mark the Vars as being "needed" at the LATERAL RTE. This is a bit * of a cheat: a more formal approach would be to mark each one as needed - * at the join of the LATERAL RTE with its source RTE. But it will work, + * at the join of the LATERAL RTE with its source RTE. But it will work, * and it's much less tedious than computing a separate where_needed for * each Var. */ @@ -568,7 +568,7 @@ create_lateral_join_info(PlannerInfo *root) * add_lateral_info * Add a LateralJoinInfo to root->lateral_info_list, if needed * - * We suppress redundant list entries. The passed Relids are copied if saved. + * We suppress redundant list entries. The passed Relids are copied if saved. */ static void add_lateral_info(PlannerInfo *root, Relids lhs, Relids rhs) @@ -615,7 +615,7 @@ add_lateral_info(PlannerInfo *root, Relids lhs, Relids rhs) * deconstruct_jointree * Recursively scan the query's join tree for WHERE and JOIN/ON qual * clauses, and add these to the appropriate restrictinfo and joininfo - * lists belonging to base RelOptInfos. Also, add SpecialJoinInfo nodes + * lists belonging to base RelOptInfos. Also, add SpecialJoinInfo nodes * to root->join_info_list for any outer joins appearing in the query tree. * Return a "joinlist" data structure showing the join order decisions * that need to be made by make_one_rel(). @@ -632,9 +632,9 @@ add_lateral_info(PlannerInfo *root, Relids lhs, Relids rhs) * be evaluated at the lowest level where all the variables it mentions are * available. However, we cannot push a qual down into the nullable side(s) * of an outer join since the qual might eliminate matching rows and cause a - * NULL row to be incorrectly emitted by the join. Therefore, we artificially + * NULL row to be incorrectly emitted by the join. Therefore, we artificially * OR the minimum-relids of such an outer join into the required_relids of - * clauses appearing above it. This forces those clauses to be delayed until + * clauses appearing above it. This forces those clauses to be delayed until * application of the outer join (or maybe even higher in the join tree). */ List * @@ -755,7 +755,7 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join, *inner_join_rels = *qualscope; /* - * Try to process any quals postponed by children. If they need + * Try to process any quals postponed by children. If they need * further postponement, add them to my output postponed_qual_list. */ foreach(l, child_postponed_quals) @@ -807,7 +807,7 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join, * regard for whether this level is an outer join, which is correct. * Then we place our own join quals, which are restricted by lower * outer joins in any case, and are forced to this level if this is an - * outer join and they mention the outer side. Finally, if this is an + * outer join and they mention the outer side. Finally, if this is an * outer join, we create a join_info_list entry for the join. This * will prevent quals above us in the join tree that use those rels * from being pushed down below this level. (It's okay for upper @@ -897,7 +897,7 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join, nullable_rels); /* - * Try to process any quals postponed by children. If they need + * Try to process any quals postponed by children. If they need * further postponement, add them to my output postponed_qual_list. * Quals that can be processed now must be included in my_quals, so * that they'll be handled properly in make_outerjoininfo. @@ -1059,7 +1059,7 @@ make_outerjoininfo(PlannerInfo *root, * complain if any nullable rel is FOR [KEY] UPDATE/SHARE. * * You might be wondering why this test isn't made far upstream in the - * parser. It's because the parser hasn't got enough info --- consider + * parser. It's because the parser hasn't got enough info --- consider * FOR UPDATE applied to a view. Only after rewriting and flattening do * we know whether the view contains an outer join. * @@ -1074,8 +1074,8 @@ make_outerjoininfo(PlannerInfo *root, (jointype == JOIN_FULL && bms_is_member(rc->rti, left_rels))) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - /*------ - translator: %s is a SQL row locking clause such as FOR UPDATE */ + /*------ + translator: %s is a SQL row locking clause such as FOR UPDATE */ errmsg("%s cannot be applied to the nullable side of an outer join", LCS_asString(rc->strength)))); } @@ -1117,7 +1117,7 @@ make_outerjoininfo(PlannerInfo *root, min_lefthand = bms_intersect(clause_relids, left_rels); /* - * Similarly for required RHS. But here, we must also include any lower + * Similarly for required RHS. But here, we must also include any lower * inner joins, to ensure we don't try to commute with any of them. */ min_righthand = bms_int_members(bms_union(clause_relids, inner_join_rels), @@ -1169,7 +1169,7 @@ make_outerjoininfo(PlannerInfo *root, * Here, we have to consider that "our join condition" includes any * clauses that syntactically appeared above the lower OJ and below * ours; those are equivalent to degenerate clauses in our OJ and must - * be treated as such. Such clauses obviously can't reference our + * be treated as such. Such clauses obviously can't reference our * LHS, and they must be non-strict for the lower OJ's RHS (else * reduce_outer_joins would have reduced the lower OJ to a plain * join). Hence the other ways in which we handle clauses within our @@ -1248,7 +1248,7 @@ make_outerjoininfo(PlannerInfo *root, * distribute_qual_to_rels * Add clause information to either the baserestrictinfo or joininfo list * (depending on whether the clause is a join) of each base relation - * mentioned in the clause. A RestrictInfo node is created and added to + * mentioned in the clause. A RestrictInfo node is created and added to * the appropriate list for each rel. Alternatively, if the clause uses a * mergejoinable operator and is not delayed by outer-join rules, enter * the left- and right-side expressions into the query's list of @@ -1313,7 +1313,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * In ordinary SQL, a WHERE or JOIN/ON clause can't reference any rels * that aren't within its syntactic scope; however, if we pulled up a * LATERAL subquery then we might find such references in quals that have - * been pulled up. We need to treat such quals as belonging to the join + * been pulled up. We need to treat such quals as belonging to the join * level that includes every rel they reference. Although we could make * pull_up_subqueries() place such quals correctly to begin with, it's * easier to handle it here. When we find a clause that contains Vars @@ -1357,10 +1357,10 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * gating Result plan node. We put such a clause into the regular * RestrictInfo lists for the moment, but eventually createplan.c will * pull it out and make a gating Result node immediately above whatever - * plan node the pseudoconstant clause is assigned to. It's usually best + * plan node the pseudoconstant clause is assigned to. It's usually best * to put a gating node as high in the plan tree as possible. If we are * not below an outer join, we can actually push the pseudoconstant qual - * all the way to the top of the tree. If we are below an outer join, we + * all the way to the top of the tree. If we are below an outer join, we * leave the qual at its original syntactic level (we could push it up to * just below the outer join, but that seems more complex than it's * worth). @@ -1414,7 +1414,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * Note: it is not immediately obvious that a simple boolean is enough * for this: if for some reason we were to attach a degenerate qual to * its original join level, it would need to be treated as an outer join - * qual there. However, this cannot happen, because all the rels the + * qual there. However, this cannot happen, because all the rels the * clause mentions must be in the outer join's min_righthand, therefore * the join it needs must be formed before the outer join; and we always * attach quals to the lowest level where they can be evaluated. But @@ -1448,7 +1448,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * We can't use such a clause to deduce equivalence (the left and * right sides might be unequal above the join because one of them has * gone to NULL) ... but we might be able to use it for more limited - * deductions, if it is mergejoinable. So consider adding it to the + * deductions, if it is mergejoinable. So consider adding it to the * lists of set-aside outer-join clauses. */ is_pushed_down = false; @@ -1478,7 +1478,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, else { /* - * Normal qual clause or degenerate outer-join clause. Either way, we + * Normal qual clause or degenerate outer-join clause. Either way, we * can mark it as pushed-down. */ is_pushed_down = true; @@ -1598,7 +1598,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * * In all cases, it's important to initialize the left_ec and right_ec * fields of a mergejoinable clause, so that all possibly mergejoinable - * expressions have representations in EquivalenceClasses. If + * expressions have representations in EquivalenceClasses. If * process_equivalence is successful, it will take care of that; * otherwise, we have to call initialize_mergeclause_eclasses to do it. */ @@ -1674,7 +1674,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * For an is_pushed_down qual, we can evaluate the qual as soon as (1) we have * all the rels it mentions, and (2) we are at or above any outer joins that * can null any of these rels and are below the syntactic location of the - * given qual. We must enforce (2) because pushing down such a clause below + * given qual. We must enforce (2) because pushing down such a clause below * the OJ might cause the OJ to emit null-extended rows that should not have * been formed, or that should have been rejected by the clause. (This is * only an issue for non-strict quals, since if we can prove a qual mentioning @@ -1700,7 +1700,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * required relids overlap the LHS too) causes that OJ's delay_upper_joins * flag to be set TRUE. This will prevent any higher-level OJs from * being interchanged with that OJ, which would result in not having any - * correct place to evaluate the qual. (The case we care about here is a + * correct place to evaluate the qual. (The case we care about here is a * sub-select WHERE clause within the RHS of some outer join. The WHERE * clause must effectively be treated as a degenerate clause of that outer * join's condition. Rather than trying to match such clauses with joins @@ -1928,7 +1928,7 @@ distribute_restrictinfo_to_rels(PlannerInfo *root, * that provides all its variables. * * "nullable_relids" is the set of relids used in the expressions that are - * potentially nullable below the expressions. (This has to be supplied by + * potentially nullable below the expressions. (This has to be supplied by * caller because this function is used after deconstruct_jointree, so we * don't have knowledge of where the clause items came from.) * @@ -2098,7 +2098,7 @@ check_mergejoinable(RestrictInfo *restrictinfo) * info fields in the restrictinfo. * * Currently, we support hashjoin for binary opclauses where - * the operator is a hashjoinable operator. The arguments can be + * the operator is a hashjoinable operator. The arguments can be * anything --- as long as there are no volatile functions in them. */ static void diff --git a/src/backend/optimizer/plan/planagg.c b/src/backend/optimizer/plan/planagg.c index 7937ff00e05..94ca92d78e7 100644 --- a/src/backend/optimizer/plan/planagg.c +++ b/src/backend/optimizer/plan/planagg.c @@ -10,9 +10,9 @@ * ORDER BY col ASC/DESC * LIMIT 1) * Given a suitable index on tab.col, this can be much faster than the - * generic scan-all-the-rows aggregation plan. We can handle multiple + * generic scan-all-the-rows aggregation plan. We can handle multiple * MIN/MAX aggregates by generating multiple subqueries, and their - * orderings can be different. However, if the query contains any + * orderings can be different. However, if the query contains any * non-optimizable aggregates, there's no point since we'll have to * scan all the rows anyway. * @@ -128,7 +128,7 @@ preprocess_minmax_aggregates(PlannerInfo *root, List *tlist) /* * Scan the tlist and HAVING qual to find all the aggregates and verify - * all are MIN/MAX aggregates. Stop as soon as we find one that isn't. + * all are MIN/MAX aggregates. Stop as soon as we find one that isn't. */ aggs_list = NIL; if (find_minmax_aggs_walker((Node *) tlist, &aggs_list)) @@ -163,7 +163,7 @@ preprocess_minmax_aggregates(PlannerInfo *root, List *tlist) * We can use either an ordering that gives NULLS FIRST or one that * gives NULLS LAST; furthermore there's unlikely to be much * performance difference between them, so it doesn't seem worth - * costing out both ways if we get a hit on the first one. NULLS + * costing out both ways if we get a hit on the first one. NULLS * FIRST is more likely to be available if the operator is a * reverse-sort operator, so try that first if reverse. */ diff --git a/src/backend/optimizer/plan/planmain.c b/src/backend/optimizer/plan/planmain.c index 3ea916f1661..93484a0cd59 100644 --- a/src/backend/optimizer/plan/planmain.c +++ b/src/backend/optimizer/plan/planmain.c @@ -33,7 +33,7 @@ * which may involve joins but not any fancier features. * * Since query_planner does not handle the toplevel processing (grouping, - * sorting, etc) it cannot select the best path by itself. Instead, it + * sorting, etc) it cannot select the best path by itself. Instead, it * returns the RelOptInfo for the top level of joining, and the caller * (grouping_planner) can choose one of the surviving paths for the rel. * Normally it would choose either the rel's cheapest path, or the cheapest @@ -63,7 +63,7 @@ query_planner(PlannerInfo *root, List *tlist, /* * If the query has an empty join tree, then it's something easy like - * "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly. + * "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly. */ if (parse->jointree->fromlist == NIL) { @@ -129,7 +129,7 @@ query_planner(PlannerInfo *root, List *tlist, /* * Examine the targetlist and join tree, adding entries to baserel * targetlists for all referenced Vars, and generating PlaceHolderInfo - * entries for all referenced PlaceHolderVars. Restrict and join clauses + * entries for all referenced PlaceHolderVars. Restrict and join clauses * are added to appropriate lists belonging to the mentioned relations. We * also build EquivalenceClasses for provably equivalent expressions. The * SpecialJoinInfo list is also built to hold information about join order @@ -153,7 +153,7 @@ query_planner(PlannerInfo *root, List *tlist, /* * If we formed any equivalence classes, generate additional restriction - * clauses as appropriate. (Implied join clauses are formed on-the-fly + * clauses as appropriate. (Implied join clauses are formed on-the-fly * later.) */ generate_base_implied_equalities(root); @@ -168,14 +168,14 @@ query_planner(PlannerInfo *root, List *tlist, /* * Examine any "placeholder" expressions generated during subquery pullup. * Make sure that the Vars they need are marked as needed at the relevant - * join level. This must be done before join removal because it might + * join level. This must be done before join removal because it might * cause Vars or placeholders to be needed above a join when they weren't * so marked before. */ fix_placeholder_input_needed_levels(root); /* - * Remove any useless outer joins. Ideally this would be done during + * Remove any useless outer joins. Ideally this would be done during * jointree preprocessing, but the necessary information isn't available * until we've built baserel data structures and classified qual clauses. */ diff --git a/src/backend/optimizer/plan/planner.c b/src/backend/optimizer/plan/planner.c index 0508d16902b..0f1e2e46802 100644 --- a/src/backend/optimizer/plan/planner.c +++ b/src/backend/optimizer/plan/planner.c @@ -192,7 +192,7 @@ standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams) /* * We document cursor_tuple_fraction as simply being a fraction, which - * means the edge cases 0 and 1 have to be treated specially here. We + * means the edge cases 0 and 1 have to be treated specially here. We * convert 1 to 0 ("all the tuples") and 0 to a very small fraction. */ if (tuple_fraction >= 1.0) @@ -386,7 +386,7 @@ subquery_planner(PlannerGlobal *glob, Query *parse, } /* - * Preprocess RowMark information. We need to do this after subquery + * Preprocess RowMark information. We need to do this after subquery * pullup (so that all non-inherited RTEs are present) and before * inheritance expansion (so that the info is available for * expand_inherited_tables to examine and modify). @@ -506,7 +506,7 @@ subquery_planner(PlannerGlobal *glob, Query *parse, * to execute that we're better off doing it only once per group, despite * the loss of selectivity. This is hard to estimate short of doing the * entire planning process twice, so we use a heuristic: clauses - * containing subplans are left in HAVING. Otherwise, we move or copy the + * containing subplans are left in HAVING. Otherwise, we move or copy the * HAVING clause into WHERE, in hopes of eliminating tuples before * aggregation instead of after. * @@ -916,8 +916,8 @@ inheritance_planner(PlannerInfo *root) subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ ); /* - * Planning may have modified the query result relation (if there - * were security barrier quals on the result RTE). + * Planning may have modified the query result relation (if there were + * security barrier quals on the result RTE). */ appinfo->child_relid = subroot.parse->resultRelation; @@ -940,7 +940,8 @@ inheritance_planner(PlannerInfo *root) else { List *tmp_rtable = NIL; - ListCell *cell1, *cell2; + ListCell *cell1, + *cell2; /* * Check to see if any of the original RTEs were turned into @@ -1108,7 +1109,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * If there's a top-level ORDER BY, assume we have to fetch all the - * tuples. This might be too simplistic given all the hackery below + * tuples. This might be too simplistic given all the hackery below * to possibly avoid the sort; but the odds of accurate estimates here * are pretty low anyway. */ @@ -1135,7 +1136,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * We should not need to call preprocess_targetlist, since we must be - * in a SELECT query node. Instead, use the targetlist returned by + * in a SELECT query node. Instead, use the targetlist returned by * plan_set_operations (since this tells whether it returned any * resjunk columns!), and transfer any sort key information from the * original tlist. @@ -1152,11 +1153,11 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) if (parse->rowMarks) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - /*------ - translator: %s is a SQL row locking clause such as FOR UPDATE */ + /*------ + translator: %s is a SQL row locking clause such as FOR UPDATE */ errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT", LCS_asString(((RowMarkClause *) - linitial(parse->rowMarks))->strength)))); + linitial(parse->rowMarks))->strength)))); /* * Calculate pathkeys that represent result ordering requirements @@ -1279,7 +1280,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * Generate the best unsorted and presorted paths for this Query (but - * note there may not be any presorted paths). We also generate (in + * note there may not be any presorted paths). We also generate (in * standard_qp_callback) pathkey representations of the query's sort * clause, distinct clause, etc. */ @@ -1314,7 +1315,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * In GROUP BY mode, an absolute LIMIT is relative to the number - * of groups not the number of tuples. If the caller gave us a + * of groups not the number of tuples. If the caller gave us a * fraction, keep it as-is. (In both cases, we are effectively * assuming that all the groups are about the same size.) */ @@ -1673,7 +1674,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) * Furthermore, there cannot be any variables in either HAVING * or the targetlist, so we actually do not need the FROM * table at all! We can just throw away the plan-so-far and - * generate a Result node. This is a sufficiently unusual + * generate a Result node. This is a sufficiently unusual * corner case that it's not worth contorting the structure of * this routine to avoid having to generate the plan in the * first place. @@ -1717,14 +1718,14 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * The "base" targetlist for all steps of the windowing process is - * a flat tlist of all Vars and Aggs needed in the result. (In + * a flat tlist of all Vars and Aggs needed in the result. (In * some cases we wouldn't need to propagate all of these all the * way to the top, since they might only be needed as inputs to * WindowFuncs. It's probably not worth trying to optimize that * though.) We also add window partitioning and sorting * expressions to the base tlist, to ensure they're computed only * once at the bottom of the stack (that's critical for volatile - * functions). As we climb up the stack, we'll add outputs for + * functions). As we climb up the stack, we'll add outputs for * the WindowFuncs computed at each level. */ window_tlist = make_windowInputTargetList(root, @@ -1733,7 +1734,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * The copyObject steps here are needed to ensure that each plan - * node has a separately modifiable tlist. (XXX wouldn't a + * node has a separately modifiable tlist. (XXX wouldn't a * shallow list copy do for that?) */ result_plan->targetlist = (List *) copyObject(window_tlist); @@ -2018,7 +2019,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) * * Once grouping_planner() has applied a general tlist to the topmost * scan/join plan node, any tlist eval cost for added-on nodes should be - * accounted for as we create those nodes. Presently, of the node types we + * accounted for as we create those nodes. Presently, of the node types we * can add on later, only Agg, WindowAgg, and Group project new tlists (the * rest just copy their input tuples) --- so make_agg(), make_windowagg() and * make_group() are responsible for calling this function to account for their @@ -2150,7 +2151,7 @@ preprocess_rowmarks(PlannerInfo *root) * insufficient because of rule substitution, query pullup, etc. */ CheckSelectLocking(parse, ((RowMarkClause *) - linitial(parse->rowMarks))->strength); + linitial(parse->rowMarks))->strength); } else { @@ -2184,7 +2185,7 @@ preprocess_rowmarks(PlannerInfo *root) /* * Currently, it is syntactically impossible to have FOR UPDATE et al - * applied to an update/delete target rel. If that ever becomes + * applied to an update/delete target rel. If that ever becomes * possible, we should drop the target from the PlanRowMark list. */ Assert(rc->rti != parse->resultRelation); @@ -2268,7 +2269,7 @@ preprocess_rowmarks(PlannerInfo *root) * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses * * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the - * results back in *count_est and *offset_est. These variables are set to + * results back in *count_est and *offset_est. These variables are set to * 0 if the corresponding clause is not present, and -1 if it's present * but we couldn't estimate the value for it. (The "0" convention is OK * for OFFSET but a little bit bogus for LIMIT: effectively we estimate @@ -2277,7 +2278,7 @@ preprocess_rowmarks(PlannerInfo *root) * be passed to make_limit, which see if you change this code. * * The return value is the suitably adjusted tuple_fraction to use for - * planning the query. This adjustment is not overridable, since it reflects + * planning the query. This adjustment is not overridable, since it reflects * plan actions that grouping_planner() will certainly take, not assumptions * about context. */ @@ -2401,7 +2402,7 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction, else if (*offset_est != 0 && tuple_fraction > 0.0) { /* - * We have an OFFSET but no LIMIT. This acts entirely differently + * We have an OFFSET but no LIMIT. This acts entirely differently * from the LIMIT case: here, we need to increase rather than decrease * the caller's tuple_fraction, because the OFFSET acts to cause more * tuples to be fetched instead of fewer. This only matters if we got @@ -2416,7 +2417,7 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction, /* * If we have absolute counts from both caller and OFFSET, add them - * together; likewise if they are both fractional. If one is + * together; likewise if they are both fractional. If one is * fractional and the other absolute, we want to take the larger, and * we heuristically assume that's the fractional one. */ @@ -2457,7 +2458,7 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction, * * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding * a Limit node. This is worth checking for because "OFFSET 0" is a common - * locution for an optimization fence. (Because other places in the planner + * locution for an optimization fence. (Because other places in the planner * merely check whether parse->limitOffset isn't NULL, it will still work as * an optimization fence --- we're just suppressing unnecessary run-time * overhead.) @@ -2700,7 +2701,7 @@ choose_hashed_grouping(PlannerInfo *root, /* * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY - * aggregates. (Doing so would imply storing *all* the input values in + * aggregates. (Doing so would imply storing *all* the input values in * the hash table, and/or running many sorts in parallel, either of which * seems like a certain loser.) We similarly don't support ordered-set * aggregates in hashed aggregation, but that case is included in the @@ -2840,7 +2841,7 @@ choose_hashed_grouping(PlannerInfo *root, * pass in the costs as individual variables.) * * But note that making the two choices independently is a bit bogus in - * itself. If the two could be combined into a single choice operation + * itself. If the two could be combined into a single choice operation * it'd probably be better, but that seems far too unwieldy to be practical, * especially considering that the combination of GROUP BY and DISTINCT * isn't very common in real queries. By separating them, we are giving @@ -2937,7 +2938,7 @@ choose_hashed_distinct(PlannerInfo *root, 0.0, work_mem, limit_tuples); /* - * Now for the GROUP case. See comments in grouping_planner about the + * Now for the GROUP case. See comments in grouping_planner about the * sorting choices here --- this code should match that code. */ sorted_p.startup_cost = sorted_startup_cost; @@ -3127,7 +3128,7 @@ make_subplanTargetList(PlannerInfo *root, * add them to the result tlist if not already present. (A Var used * directly as a GROUP BY item will be present already.) Note this * includes Vars used in resjunk items, so we are covering the needs of - * ORDER BY and window specifications. Vars used within Aggrefs will be + * ORDER BY and window specifications. Vars used within Aggrefs will be * pulled out here, too. */ non_group_vars = pull_var_clause((Node *) non_group_cols, @@ -3178,7 +3179,7 @@ get_grouping_column_index(Query *parse, TargetEntry *tle) * Locate grouping columns in the tlist chosen by create_plan. * * This is only needed if we don't use the sub_tlist chosen by - * make_subplanTargetList. We have to forget the column indexes found + * make_subplanTargetList. We have to forget the column indexes found * by that routine and re-locate the grouping exprs in the real sub_tlist. * We assume the grouping exprs are just Vars (see make_subplanTargetList). */ @@ -3209,11 +3210,11 @@ locate_grouping_columns(PlannerInfo *root, /* * The grouping column returned by create_plan might not have the same - * typmod as the original Var. (This can happen in cases where a + * typmod as the original Var. (This can happen in cases where a * set-returning function has been inlined, so that we now have more * knowledge about what it returns than we did when the original Var * was created.) So we can't use tlist_member() to search the tlist; - * instead use tlist_member_match_var. For safety, still check that + * instead use tlist_member_match_var. For safety, still check that * the vartype matches. */ if (!(groupexpr && IsA(groupexpr, Var))) @@ -3339,7 +3340,7 @@ select_active_windows(PlannerInfo *root, WindowFuncLists *wflists) * * When grouping_planner inserts one or more WindowAgg nodes into the plan, * this function computes the initial target list to be computed by the node - * just below the first WindowAgg. This list must contain all values needed + * just below the first WindowAgg. This list must contain all values needed * to evaluate the window functions, compute the final target list, and * perform any required final sort step. If multiple WindowAggs are needed, * each intermediate one adds its window function results onto this tlist; @@ -3347,7 +3348,7 @@ select_active_windows(PlannerInfo *root, WindowFuncLists *wflists) * * This function is much like make_subplanTargetList, though not quite enough * like it to share code. As in that function, we flatten most expressions - * into their component variables. But we do not want to flatten window + * into their component variables. But we do not want to flatten window * PARTITION BY/ORDER BY clauses, since that might result in multiple * evaluations of them, which would be bad (possibly even resulting in * inconsistent answers, if they contain volatile functions). Also, we must @@ -3520,7 +3521,7 @@ make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, * This depends on the behavior of make_pathkeys_for_window()! * * We are given the target WindowClause and an array of the input column - * numbers associated with the resulting pathkeys. In the easy case, there + * numbers associated with the resulting pathkeys. In the easy case, there * are the same number of pathkey columns as partitioning + ordering columns * and we just have to copy some data around. However, it's possible that * some of the original partitioning + ordering columns were eliminated as @@ -3532,7 +3533,7 @@ make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, * determine which keys are significant. * * The method used here is a bit brute-force: add the sort columns to a list - * one at a time and note when the resulting pathkey list gets longer. But + * one at a time and note when the resulting pathkey list gets longer. But * it's a sufficiently uncommon case that a faster way doesn't seem worth * the amount of code refactoring that'd be needed. *---------- diff --git a/src/backend/optimizer/plan/setrefs.c b/src/backend/optimizer/plan/setrefs.c index 46affe7dad0..768c5c76704 100644 --- a/src/backend/optimizer/plan/setrefs.c +++ b/src/backend/optimizer/plan/setrefs.c @@ -145,7 +145,7 @@ static bool extract_query_dependencies_walker(Node *node, /* * set_plan_references * - * This is the final processing pass of the planner/optimizer. The plan + * This is the final processing pass of the planner/optimizer. The plan * tree is complete; we just have to adjust some representational details * for the convenience of the executor: * @@ -189,7 +189,7 @@ static bool extract_query_dependencies_walker(Node *node, * and root->glob->invalItems (for everything else). * * Notice that we modify Plan nodes in-place, but use expression_tree_mutator - * to process targetlist and qual expressions. We can assume that the Plan + * to process targetlist and qual expressions. We can assume that the Plan * nodes were just built by the planner and are not multiply referenced, but * it's not so safe to assume that for expression tree nodes. */ @@ -262,7 +262,7 @@ add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing) /* * If there are any dead subqueries, they are not referenced in the Plan * tree, so we must add RTEs contained in them to the flattened rtable - * separately. (If we failed to do this, the executor would not perform + * separately. (If we failed to do this, the executor would not perform * expected permission checks for tables mentioned in such subqueries.) * * Note: this pass over the rangetable can't be combined with the previous @@ -292,7 +292,7 @@ add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing) /* * The subquery might never have been planned at all, if it * was excluded on the basis of self-contradictory constraints - * in our query level. In this case apply + * in our query level. In this case apply * flatten_unplanned_rtes. * * If it was planned but the plan is dummy, we assume that it @@ -591,7 +591,7 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) /* * These plan types don't actually bother to evaluate their * targetlists, because they just return their unmodified input - * tuples. Even though the targetlist won't be used by the + * tuples. Even though the targetlist won't be used by the * executor, we fix it up for possible use by EXPLAIN (not to * mention ease of debugging --- wrong varnos are very confusing). */ @@ -609,7 +609,7 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) /* * Like the plan types above, LockRows doesn't evaluate its - * tlist or quals. But we have to fix up the RT indexes in + * tlist or quals. But we have to fix up the RT indexes in * its rowmarks. */ set_dummy_tlist_references(plan, rtoffset); @@ -727,7 +727,7 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) * Set up the visible plan targetlist as being the same as * the first RETURNING list. This is for the use of * EXPLAIN; the executor won't pay any attention to the - * targetlist. We postpone this step until here so that + * targetlist. We postpone this step until here so that * we don't have to do set_returning_clause_references() * twice on identical targetlists. */ @@ -953,7 +953,7 @@ set_subqueryscan_references(PlannerInfo *root, else { /* - * Keep the SubqueryScan node. We have to do the processing that + * Keep the SubqueryScan node. We have to do the processing that * set_plan_references would otherwise have done on it. Notice we do * not do set_upper_references() here, because a SubqueryScan will * always have been created with correct references to its subplan's @@ -1425,7 +1425,7 @@ set_dummy_tlist_references(Plan *plan, int rtoffset) * * In most cases, subplan tlists will be "flat" tlists with only Vars, * so we try to optimize that case by extracting information about Vars - * in advance. Matching a parent tlist to a child is still an O(N^2) + * in advance. Matching a parent tlist to a child is still an O(N^2) * operation, but at least with a much smaller constant factor than plain * tlist_member() searches. * @@ -1870,7 +1870,7 @@ fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context) * adjust any Vars that refer to other tables to reference junk tlist * entries in the top subplan's targetlist. Vars referencing the result * table should be left alone, however (the executor will evaluate them - * using the actual heap tuple, after firing triggers if any). In the + * using the actual heap tuple, after firing triggers if any). In the * adjusted RETURNING list, result-table Vars will have their original * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR. * diff --git a/src/backend/optimizer/plan/subselect.c b/src/backend/optimizer/plan/subselect.c index a3f358377da..be92049ec4d 100644 --- a/src/backend/optimizer/plan/subselect.c +++ b/src/backend/optimizer/plan/subselect.c @@ -434,7 +434,7 @@ make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, Node *result; /* - * Copy the source Query node. This is a quick and dirty kluge to resolve + * Copy the source Query node. This is a quick and dirty kluge to resolve * the fact that the parser can generate trees with multiple links to the * same sub-Query node, but the planner wants to scribble on the Query. * Try to clean this up when we do querytree redesign... @@ -459,7 +459,7 @@ make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, * path/costsize.c. * * XXX If an ANY subplan is uncorrelated, build_subplan may decide to hash - * its output. In that case it would've been better to specify full + * its output. In that case it would've been better to specify full * retrieval. At present, however, we can only check hashability after * we've made the subplan :-(. (Determining whether it'll fit in work_mem * is the really hard part.) Therefore, we don't want to be too @@ -496,7 +496,7 @@ make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, /* * If it's a correlated EXISTS with an unimportant targetlist, we might be * able to transform it to the equivalent of an IN and then implement it - * by hashing. We don't have enough information yet to tell which way is + * by hashing. We don't have enough information yet to tell which way is * likely to be better (it depends on the expected number of executions of * the EXISTS qual, and we are much too early in planning the outer query * to be able to guess that). So we generate both plans, if possible, and @@ -724,7 +724,7 @@ build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot, * Otherwise, we have the option to tack a Material node onto the top * of the subplan, to reduce the cost of reading it repeatedly. This * is pointless for a direct-correlated subplan, since we'd have to - * recompute its results each time anyway. For uncorrelated/undirect + * recompute its results each time anyway. For uncorrelated/undirect * correlated subplans, we add Material unless the subplan's top plan * node would materialize its output anyway. Also, if enable_material * is false, then the user does not want us to materialize anything @@ -750,10 +750,10 @@ build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot, /* * A parameterless subplan (not initplan) should be prepared to handle - * REWIND efficiently. If it has direct parameters then there's no point + * REWIND efficiently. If it has direct parameters then there's no point * since it'll be reset on each scan anyway; and if it's an initplan then * there's no point since it won't get re-run without parameter changes - * anyway. The input of a hashed subplan doesn't need REWIND either. + * anyway. The input of a hashed subplan doesn't need REWIND either. */ if (splan->parParam == NIL && !isInitPlan && !splan->useHashTable) root->glob->rewindPlanIDs = bms_add_member(root->glob->rewindPlanIDs, @@ -850,7 +850,7 @@ generate_subquery_vars(PlannerInfo *root, List *tlist, Index varno) /* * convert_testexpr: convert the testexpr given by the parser into * actually executable form. This entails replacing PARAM_SUBLINK Params - * with Params or Vars representing the results of the sub-select. The + * with Params or Vars representing the results of the sub-select. The * nodes to be substituted are passed in as the List result from * generate_subquery_params or generate_subquery_vars. */ @@ -952,7 +952,7 @@ testexpr_is_hashable(Node *testexpr) * * The combining operators must be hashable and strict. The need for * hashability is obvious, since we want to use hashing. Without - * strictness, behavior in the presence of nulls is too unpredictable. We + * strictness, behavior in the presence of nulls is too unpredictable. We * actually must assume even more than plain strictness: they can't yield * NULL for non-null inputs, either (see nodeSubplan.c). However, hash * indexes and hash joins assume that too. @@ -1060,7 +1060,7 @@ SS_process_ctes(PlannerInfo *root) } /* - * Copy the source Query node. Probably not necessary, but let's keep + * Copy the source Query node. Probably not necessary, but let's keep * this similar to make_subplan. */ subquery = (Query *) copyObject(cte->ctequery); @@ -1086,7 +1086,7 @@ SS_process_ctes(PlannerInfo *root) elog(ERROR, "unexpected outer reference in CTE query"); /* - * Make a SubPlan node for it. This is just enough unlike + * Make a SubPlan node for it. This is just enough unlike * build_subplan that we can't share code. * * Note plan_id, plan_name, and cost fields are set further down. @@ -1309,7 +1309,7 @@ convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, /* * See if the subquery can be simplified based on the knowledge that it's - * being used in EXISTS(). If we aren't able to get rid of its + * being used in EXISTS(). If we aren't able to get rid of its * targetlist, we have to fail, because the pullup operation leaves us * with noplace to evaluate the targetlist. */ @@ -1358,9 +1358,9 @@ convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, * what pull_up_subqueries has to go through. * * In fact, it's even easier than what convert_ANY_sublink_to_join has to - * do. The machinations of simplify_EXISTS_query ensured that there is + * do. The machinations of simplify_EXISTS_query ensured that there is * nothing interesting in the subquery except an rtable and jointree, and - * even the jointree FromExpr no longer has quals. So we can just append + * even the jointree FromExpr no longer has quals. So we can just append * the rtable to our own and use the FromExpr in our jointree. But first, * adjust all level-zero varnos in the subquery to account for the rtable * merger. @@ -1491,7 +1491,7 @@ simplify_EXISTS_query(Query *query) * * On success, the modified subselect is returned, and we store a suitable * upper-level test expression at *testexpr, plus a list of the subselect's - * output Params at *paramIds. (The test expression is already Param-ified + * output Params at *paramIds. (The test expression is already Param-ified * and hence need not go through convert_testexpr, which is why we have to * deal with the Param IDs specially.) * @@ -1654,7 +1654,7 @@ convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect, return NULL; /* - * Also reject sublinks in the stuff we intend to pull up. (It might be + * Also reject sublinks in the stuff we intend to pull up. (It might be * possible to support this, but doesn't seem worth the complication.) */ if (contain_subplans((Node *) leftargs)) @@ -1856,7 +1856,7 @@ process_sublinks_mutator(Node *node, process_sublinks_context *context) * is needed for a bare List.) * * Anywhere within the top-level AND/OR clause structure, we can tell - * make_subplan() that NULL and FALSE are interchangeable. So isTopQual + * make_subplan() that NULL and FALSE are interchangeable. So isTopQual * propagates down in both cases. (Note that this is unlike the meaning * of "top level qual" used in most other places in Postgres.) */ @@ -1962,7 +1962,7 @@ SS_finalize_plan(PlannerInfo *root, Plan *plan, bool attach_initplans) * Now determine the set of params that are validly referenceable in this * query level; to wit, those available from outer query levels plus the * output parameters of any local initPlans. (We do not include output - * parameters of regular subplans. Those should only appear within the + * parameters of regular subplans. Those should only appear within the * testexpr of SubPlan nodes, and are taken care of locally within * finalize_primnode. Likewise, special parameters that are generated by * nodes such as ModifyTable are handled within finalize_plan.) @@ -2138,7 +2138,7 @@ finalize_plan(PlannerInfo *root, Plan *plan, Bitmapset *valid_params, /* * In a SubqueryScan, SS_finalize_plan has already been run on the * subplan by the inner invocation of subquery_planner, so there's - * no need to do it again. Instead, just pull out the subplan's + * no need to do it again. Instead, just pull out the subplan's * extParams list, which represents the params it needs from my * level and higher levels. */ @@ -2500,7 +2500,7 @@ finalize_primnode(Node *node, finalize_primnode_context *context) /* * Remove any param IDs of output parameters of the subplan that were - * referenced in the testexpr. These are not interesting for + * referenced in the testexpr. These are not interesting for * parameter change signaling since we always re-evaluate the subplan. * Note that this wouldn't work too well if there might be uses of the * same param IDs elsewhere in the plan, but that can't happen because @@ -2598,7 +2598,7 @@ SS_make_initplan_from_plan(PlannerInfo *root, Plan *plan, /* Label the subplan for EXPLAIN purposes */ node->plan_name = psprintf("InitPlan %d (returns $%d)", - node->plan_id, prm->paramid); + node->plan_id, prm->paramid); return prm; } diff --git a/src/backend/optimizer/prep/prepjointree.c b/src/backend/optimizer/prep/prepjointree.c index 812e56d4c19..776fe426c3e 100644 --- a/src/backend/optimizer/prep/prepjointree.c +++ b/src/backend/optimizer/prep/prepjointree.c @@ -116,7 +116,7 @@ static Node *find_jointree_node_for_rel(Node *jtnode, int relid); * * A clause "foo op ANY (sub-SELECT)" can be processed by pulling the * sub-SELECT up to become a rangetable entry and treating the implied - * comparisons as quals of a semijoin. However, this optimization *only* + * comparisons as quals of a semijoin. However, this optimization *only* * works at the top level of WHERE or a JOIN/ON clause, because we cannot * distinguish whether the ANY ought to return FALSE or NULL in cases * involving NULL inputs. Also, in an outer join's ON clause we can only @@ -133,7 +133,7 @@ static Node *find_jointree_node_for_rel(Node *jtnode, int relid); * transformations if any are found. * * This routine has to run before preprocess_expression(), so the quals - * clauses are not yet reduced to implicit-AND format. That means we need + * clauses are not yet reduced to implicit-AND format. That means we need * to recursively search through explicit AND clauses, which are * probably only binary ANDs. We stop as soon as we hit a non-AND item. */ @@ -287,7 +287,7 @@ pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, /* * Although we could include the pulled-up subqueries in the returned * relids, there's no need since upper quals couldn't refer to their - * outputs anyway. But we *do* need to include the join's own rtindex + * outputs anyway. But we *do* need to include the join's own rtindex * because we haven't yet collapsed join alias variables, so upper * levels would mistakenly think they couldn't use references to this * join. @@ -609,7 +609,7 @@ pull_up_subqueries(PlannerInfo *root, Node *jtnode) * * If this jointree node is within either side of an outer join, then * lowest_outer_join references the lowest such JoinExpr node; otherwise - * it is NULL. We use this to constrain the effects of LATERAL subqueries. + * it is NULL. We use this to constrain the effects of LATERAL subqueries. * * If this jointree node is within the nullable side of an outer join, then * lowest_nulling_outer_join references the lowest such JoinExpr node; @@ -759,7 +759,7 @@ pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, * Attempt to pull up a single simple subquery. * * jtnode is a RangeTblRef that has been tentatively identified as a simple - * subquery by pull_up_subqueries. We return the replacement jointree node, + * subquery by pull_up_subqueries. We return the replacement jointree node, * or jtnode itself if we determine that the subquery can't be pulled up after * all. * @@ -792,7 +792,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, * Create a PlannerInfo data structure for this subquery. * * NOTE: the next few steps should match the first processing in - * subquery_planner(). Can we refactor to avoid code duplication, or + * subquery_planner(). Can we refactor to avoid code duplication, or * would that just make things uglier? */ subroot = makeNode(PlannerInfo); @@ -842,7 +842,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, /* * Now we must recheck whether the subquery is still simple enough to pull - * up. If not, abandon processing it. + * up. If not, abandon processing it. * * We don't really need to recheck all the conditions involved, but it's * easier just to keep this "if" looking the same as the one in @@ -859,7 +859,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, * Give up, return unmodified RangeTblRef. * * Note: The work we just did will be redone when the subquery gets - * planned on its own. Perhaps we could avoid that by storing the + * planned on its own. Perhaps we could avoid that by storing the * modified subquery back into the rangetable, but I'm not gonna risk * it now. */ @@ -900,7 +900,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, * non-nullable items and lateral references may have to be turned into * PlaceHolderVars. If we are dealing with an appendrel member then * anything that's not a simple Var has to be turned into a - * PlaceHolderVar. Set up required context data for pullup_replace_vars. + * PlaceHolderVar. Set up required context data for pullup_replace_vars. */ rvcontext.root = root; rvcontext.targetlist = subquery->targetList; @@ -925,7 +925,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, * replace any of the jointree structure. (This'd be a lot cleaner if we * could use query_tree_mutator.) We have to use PHVs in the targetList, * returningList, and havingQual, since those are certainly above any - * outer join. replace_vars_in_jointree tracks its location in the + * outer join. replace_vars_in_jointree tracks its location in the * jointree and uses PHVs or not appropriately. */ parse->targetList = (List *) @@ -1084,7 +1084,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, * Pull up a single simple UNION ALL subquery. * * jtnode is a RangeTblRef that has been identified as a simple UNION ALL - * subquery by pull_up_subqueries. We pull up the leaf subqueries and + * subquery by pull_up_subqueries. We pull up the leaf subqueries and * build an "append relation" for the union set. The result value is just * jtnode, since we don't actually need to change the query jointree. */ @@ -1098,7 +1098,7 @@ pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte) /* * Make a modifiable copy of the subquery's rtable, so we can adjust - * upper-level Vars in it. There are no such Vars in the setOperations + * upper-level Vars in it. There are no such Vars in the setOperations * tree proper, so fixing the rtable should be sufficient. */ rtable = copyObject(subquery->rtable); @@ -1370,7 +1370,7 @@ is_simple_subquery(Query *subquery, RangeTblEntry *rte, /* * Don't pull up a subquery that has any set-returning functions in its - * targetlist. Otherwise we might well wind up inserting set-returning + * targetlist. Otherwise we might well wind up inserting set-returning * functions into places where they mustn't go, such as quals of higher * queries. */ @@ -1379,7 +1379,7 @@ is_simple_subquery(Query *subquery, RangeTblEntry *rte, /* * Don't pull up a subquery that has any volatile functions in its - * targetlist. Otherwise we might introduce multiple evaluations of these + * targetlist. Otherwise we might introduce multiple evaluations of these * functions, if they get copied to multiple places in the upper query, * leading to surprising results. (Note: the PlaceHolderVar mechanism * doesn't quite guarantee single evaluation; else we could pull up anyway @@ -1609,7 +1609,7 @@ replace_vars_in_jointree(Node *jtnode, /* * If the RangeTblRef refers to a LATERAL subquery (that isn't the * same subquery we're pulling up), it might contain references to the - * target subquery, which we must replace. We drive this from the + * target subquery, which we must replace. We drive this from the * jointree scan, rather than a scan of the rtable, for a couple of * reasons: we can avoid processing no-longer-referenced RTEs, and we * can use the appropriate setting of need_phvs depending on whether @@ -1770,7 +1770,7 @@ pullup_replace_vars_callback(Var *var, /* * Insert PlaceHolderVar if needed. Notice that we are wrapping one * PlaceHolderVar around the whole RowExpr, rather than putting one - * around each element of the row. This is because we need the + * around each element of the row. This is because we need the * expression to yield NULL, not ROW(NULL,NULL,...) when it is forced * to null by an outer join. */ @@ -1872,7 +1872,7 @@ pullup_replace_vars_callback(Var *var, /* * Cache it if possible (ie, if the attno is in range, which it - * probably always should be). We can cache the value even if we + * probably always should be). We can cache the value even if we * decided we didn't need a PHV, since this result will be * suitable for any request that has need_phvs. */ @@ -1915,7 +1915,7 @@ pullup_replace_vars_subquery(Query *query, * * If a query's setOperations tree consists entirely of simple UNION ALL * operations, flatten it into an append relation, which we can process more - * intelligently than the general setops case. Otherwise, do nothing. + * intelligently than the general setops case. Otherwise, do nothing. * * In most cases, this can succeed only for a top-level query, because for a * subquery in FROM, the parent query's invocation of pull_up_subqueries would @@ -2027,7 +2027,7 @@ flatten_simple_union_all(PlannerInfo *root) * SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL; * If the join clause is strict for b.y, then only null-extended rows could * pass the upper WHERE, and we can conclude that what the query is really - * specifying is an anti-semijoin. We change the join type from JOIN_LEFT + * specifying is an anti-semijoin. We change the join type from JOIN_LEFT * to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be * removed to prevent bogus selectivity calculations, but we leave it to * distribute_qual_to_rels to get rid of such clauses. @@ -2267,7 +2267,7 @@ reduce_outer_joins_pass2(Node *jtnode, /* * See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if * the join's own quals are strict for any var that was forced null by - * higher qual levels. NOTE: there are other ways that we could + * higher qual levels. NOTE: there are other ways that we could * detect an anti-join, in particular if we were to check whether Vars * coming from the RHS must be non-null because of table constraints. * That seems complicated and expensive though (in particular, one @@ -2425,7 +2425,7 @@ reduce_outer_joins_pass2(Node *jtnode, * pulled-up relid, and change them to reference the replacement relid(s). * * NOTE: although this has the form of a walker, we cheat and modify the - * nodes in-place. This should be OK since the tree was copied by + * nodes in-place. This should be OK since the tree was copied by * pullup_replace_vars earlier. Avoid scribbling on the original values of * the bitmapsets, though, because expression_tree_mutator doesn't copy those. */ diff --git a/src/backend/optimizer/prep/prepqual.c b/src/backend/optimizer/prep/prepqual.c index 812fbaddba9..2a24938d843 100644 --- a/src/backend/optimizer/prep/prepqual.c +++ b/src/backend/optimizer/prep/prepqual.c @@ -54,12 +54,12 @@ static Expr *process_duplicate_ors(List *orlist); * Although this can be invoked on its own, it's mainly intended as a helper * for eval_const_expressions(), and that context drives several design * decisions. In particular, if the input is already AND/OR flat, we must - * preserve that property. We also don't bother to recurse in situations + * preserve that property. We also don't bother to recurse in situations * where we can assume that lower-level executions of eval_const_expressions * would already have simplified sub-clauses of the input. * * The difference between this and a simple make_notclause() is that this - * tries to get rid of the NOT node by logical simplification. It's clearly + * tries to get rid of the NOT node by logical simplification. It's clearly * always a win if the NOT node can be eliminated altogether. However, our * use of DeMorgan's laws could result in having more NOT nodes rather than * fewer. We do that unconditionally anyway, because in WHERE clauses it's @@ -152,7 +152,7 @@ negate_clause(Node *node) * those properties. For example, if no direct child of * the given AND clause is an AND or a NOT-above-OR, then * the recursive calls of negate_clause() can't return any - * OR clauses. So we needn't call pull_ors() before + * OR clauses. So we needn't call pull_ors() before * building a new OR clause. Similarly for the OR case. *-------------------- */ @@ -293,7 +293,7 @@ canonicalize_qual(Expr *qual) /* * Pull up redundant subclauses in OR-of-AND trees. We do this only * within the top-level AND/OR structure; there's no point in looking - * deeper. Also remove any NULL constants in the top-level structure. + * deeper. Also remove any NULL constants in the top-level structure. */ newqual = find_duplicate_ors(qual); @@ -374,7 +374,7 @@ pull_ors(List *orlist) * * This may seem like a fairly useless activity, but it turns out to be * applicable to many machine-generated queries, and there are also queries - * in some of the TPC benchmarks that need it. This was in fact almost the + * in some of the TPC benchmarks that need it. This was in fact almost the * sole useful side-effect of the old prepqual code that tried to force * the query into canonical AND-of-ORs form: the canonical equivalent of * ((A AND B) OR (A AND C)) @@ -400,7 +400,7 @@ pull_ors(List *orlist) * results, so it's valid to treat NULL::boolean the same as FALSE and then * simplify AND/OR accordingly. * - * Returns the modified qualification. AND/OR flatness is preserved. + * Returns the modified qualification. AND/OR flatness is preserved. */ static Expr * find_duplicate_ors(Expr *qual) diff --git a/src/backend/optimizer/prep/prepsecurity.c b/src/backend/optimizer/prep/prepsecurity.c index 7daaa3349ed..dd7f9003a28 100644 --- a/src/backend/optimizer/prep/prepsecurity.c +++ b/src/backend/optimizer/prep/prepsecurity.c @@ -33,7 +33,7 @@ typedef struct Relation rel; /* RTE relation at rt_index */ List *targetlist; /* Targetlist for new subquery RTE */ List *colnames; /* Column names in subquery RTE */ - List *vars_processed; /* List of Vars already processed */ + List *vars_processed; /* List of Vars already processed */ } security_barrier_replace_vars_context; static void expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, @@ -43,7 +43,7 @@ static void security_barrier_replace_vars(Node *node, security_barrier_replace_vars_context *context); static bool security_barrier_replace_vars_walker(Node *node, - security_barrier_replace_vars_context *context); + security_barrier_replace_vars_context *context); /* @@ -97,6 +97,7 @@ expand_security_quals(PlannerInfo *root, List *tlist) if (rt_index == parse->resultRelation) { RangeTblEntry *newrte = copyObject(rte); + parse->rtable = lappend(parse->rtable, newrte); parse->resultRelation = list_length(parse->rtable); @@ -117,11 +118,11 @@ expand_security_quals(PlannerInfo *root, List *tlist) rte->modifiedCols = NULL; /* - * For the most part, Vars referencing the original relation should - * remain as they are, meaning that they pull OLD values from the - * expanded RTE. But in the RETURNING list and in any WITH CHECK - * OPTION quals, we want such Vars to represent NEW values, so - * change them to reference the new RTE. + * For the most part, Vars referencing the original relation + * should remain as they are, meaning that they pull OLD values + * from the expanded RTE. But in the RETURNING list and in any + * WITH CHECK OPTION quals, we want such Vars to represent NEW + * values, so change them to reference the new RTE. */ ChangeVarNodes((Node *) parse->returningList, rt_index, parse->resultRelation, 0); @@ -141,7 +142,8 @@ expand_security_quals(PlannerInfo *root, List *tlist) */ while (rte->securityQuals != NIL) { - Node *qual = (Node *) linitial(rte->securityQuals); + Node *qual = (Node *) linitial(rte->securityQuals); + rte->securityQuals = list_delete_first(rte->securityQuals); ChangeVarNodes(qual, rt_index, 1, 0); @@ -160,14 +162,14 @@ static void expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, RangeTblEntry *rte, Node *qual) { - Query *parse = root->parse; - Oid relid = rte->relid; - Query *subquery; - RangeTblEntry *subrte; - RangeTblRef *subrtr; - PlanRowMark *rc; + Query *parse = root->parse; + Oid relid = rte->relid; + Query *subquery; + RangeTblEntry *subrte; + RangeTblRef *subrtr; + PlanRowMark *rc; security_barrier_replace_vars_context context; - ListCell *cell; + ListCell *cell; /* * There should only be 2 possible cases: @@ -182,6 +184,7 @@ expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, switch (rte->rtekind) { case RTE_RELATION: + /* * Turn the relation RTE into a security barrier subquery RTE, * moving all permissions checks down into the subquery. @@ -204,7 +207,7 @@ expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, rte->relid = InvalidOid; rte->subquery = subquery; rte->security_barrier = true; - rte->inh = false; /* must not be set for a subquery */ + rte->inh = false; /* must not be set for a subquery */ /* the permissions checks have now been moved down */ rte->requiredPerms = 0; @@ -219,9 +222,9 @@ expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, * Note that we can't push the user-defined quals down since they * may included untrusted functions and that means that we will * end up locking all rows which pass the securityQuals, even if - * those rows don't pass the user-defined quals. This is currently - * documented behavior, but it'd be nice to come up with a better - * solution some day. + * those rows don't pass the user-defined quals. This is + * currently documented behavior, but it'd be nice to come up with + * a better solution some day. */ rc = get_plan_rowmark(root->rowMarks, rt_index); if (rc != NULL) @@ -277,6 +280,7 @@ expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, break; case RTE_SUBQUERY: + /* * Build a new subquery that includes all the same columns as the * original subquery. @@ -288,8 +292,8 @@ expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, foreach(cell, rte->subquery->targetList) { - TargetEntry *tle; - Var *var; + TargetEntry *tle; + Var *var; tle = (TargetEntry *) lfirst(cell); var = makeVarFromTargetEntry(1, tle); @@ -333,7 +337,7 @@ expand_security_qual(PlannerInfo *root, List *tlist, int rt_index, * variable that needs to be exposed by the security barrier subquery RTE. * * NOTE: although this has the form of a walker, we cheat and modify the - * nodes in-place. The given expression tree should have been copied + * nodes in-place. The given expression tree should have been copied * earlier to ensure that no unwanted side-effects occur! */ static void @@ -355,7 +359,7 @@ security_barrier_replace_vars(Node *node, static bool security_barrier_replace_vars_walker(Node *node, - security_barrier_replace_vars_context *context) + security_barrier_replace_vars_context *context) { if (node == NULL) return false; @@ -405,7 +409,7 @@ security_barrier_replace_vars_walker(Node *node, Form_pg_attribute att_tup; att_tup = SystemAttributeDefinition(var->varattno, - context->rel->rd_rel->relhasoids); + context->rel->rd_rel->relhasoids); attname = NameStr(att_tup->attname); } else if (var->varattno == InvalidAttrNumber) diff --git a/src/backend/optimizer/prep/preptlist.c b/src/backend/optimizer/prep/preptlist.c index ee773b834e9..4ab12e51df7 100644 --- a/src/backend/optimizer/prep/preptlist.c +++ b/src/backend/optimizer/prep/preptlist.c @@ -4,7 +4,7 @@ * Routines to preprocess the parse tree target list * * For INSERT and UPDATE queries, the targetlist must contain an entry for - * each attribute of the target relation in the correct order. For all query + * each attribute of the target relation in the correct order. For all query * types, we may need to add junk tlist entries for Vars used in the RETURNING * list and row ID information needed for SELECT FOR UPDATE locking and/or * EvalPlanQual checking. @@ -79,7 +79,7 @@ preprocess_targetlist(PlannerInfo *root, List *tlist) /* * Add necessary junk columns for rowmarked rels. These values are needed * for locking of rels selected FOR UPDATE/SHARE, and to do EvalPlanQual - * rechecking. See comments for PlanRowMark in plannodes.h. + * rechecking. See comments for PlanRowMark in plannodes.h. */ foreach(lc, root->rowMarks) { @@ -144,7 +144,7 @@ preprocess_targetlist(PlannerInfo *root, List *tlist) /* * If the query has a RETURNING list, add resjunk entries for any Vars * used in RETURNING that belong to other relations. We need to do this - * to make these Vars available for the RETURNING calculation. Vars that + * to make these Vars available for the RETURNING calculation. Vars that * belong to the result rel don't need to be added, because they will be * made to refer to the actual heap tuple. */ @@ -252,9 +252,9 @@ expand_targetlist(List *tlist, int command_type, * When generating a NULL constant for a dropped column, we label * it INT4 (any other guaranteed-to-exist datatype would do as * well). We can't label it with the dropped column's datatype - * since that might not exist anymore. It does not really matter + * since that might not exist anymore. It does not really matter * what we claim the type is, since NULL is NULL --- its - * representation is datatype-independent. This could perhaps + * representation is datatype-independent. This could perhaps * confuse code comparing the finished plan to the target * relation, however. */ @@ -336,7 +336,7 @@ expand_targetlist(List *tlist, int command_type, /* * The remaining tlist entries should be resjunk; append them all to the * end of the new tlist, making sure they have resnos higher than the last - * real attribute. (Note: although the rewriter already did such + * real attribute. (Note: although the rewriter already did such * renumbering, we have to do it again here in case we are doing an UPDATE * in a table with dropped columns, or an inheritance child table with * extra columns.) diff --git a/src/backend/optimizer/prep/prepunion.c b/src/backend/optimizer/prep/prepunion.c index cdf541d34d5..0410fddc546 100644 --- a/src/backend/optimizer/prep/prepunion.c +++ b/src/backend/optimizer/prep/prepunion.c @@ -6,14 +6,14 @@ * * There are two code paths in the planner for set-operation queries. * If a subquery consists entirely of simple UNION ALL operations, it - * is converted into an "append relation". Otherwise, it is handled + * is converted into an "append relation". Otherwise, it is handled * by the general code in this module (plan_set_operations and its * subroutines). There is some support code here for the append-relation * case, but most of the heavy lifting for that is done elsewhere, * notably in prepjointree.c and allpaths.c. * * There is also some code here to support planning of queries that use - * inheritance (SELECT FROM foo*). Inheritance trees are converted into + * inheritance (SELECT FROM foo*). Inheritance trees are converted into * append relations, and thenceforth share code with the UNION ALL case. * * @@ -577,7 +577,7 @@ generate_nonunion_plan(SetOperationStmt *op, PlannerInfo *root, * * The tlist for an Append plan isn't important as far as the Append is * concerned, but we must make it look real anyway for the benefit of the - * next plan level up. In fact, it has to be real enough that the flag + * next plan level up. In fact, it has to be real enough that the flag * column is shown as a variable not a constant, else setrefs.c will get * confused. */ @@ -970,7 +970,7 @@ generate_setop_tlist(List *colTypes, List *colCollations, * Ensure the tlist entry's exposed collation matches the set-op. This * is necessary because plan_set_operations() reports the result * ordering as a list of SortGroupClauses, which don't carry collation - * themselves but just refer to tlist entries. If we don't show the + * themselves but just refer to tlist entries. If we don't show the * right collation then planner.c might do the wrong thing in * higher-level queries. * @@ -1184,7 +1184,7 @@ generate_setop_grouplist(SetOperationStmt *op, List *targetlist) /* * expand_inherited_tables * Expand each rangetable entry that represents an inheritance set - * into an "append relation". At the conclusion of this process, + * into an "append relation". At the conclusion of this process, * the "inh" flag is set in all and only those RTEs that are append * relation parents. */ @@ -1216,7 +1216,7 @@ expand_inherited_tables(PlannerInfo *root) * Check whether a rangetable entry represents an inheritance set. * If so, add entries for all the child tables to the query's * rangetable, and build AppendRelInfo nodes for all the child tables - * and add them to root->append_rel_list. If not, clear the entry's + * and add them to root->append_rel_list. If not, clear the entry's * "inh" flag to prevent later code from looking for AppendRelInfos. * * Note that the original RTE is considered to represent the whole @@ -1527,7 +1527,7 @@ make_inh_translation_list(Relation oldrelation, Relation newrelation, * parent rel's attribute numbering to the child's. * * The only surprise here is that we don't translate a parent whole-row - * reference into a child whole-row reference. That would mean requiring + * reference into a child whole-row reference. That would mean requiring * permissions on all child columns, which is overly strict, since the * query is really only going to reference the inherited columns. Instead * we set the per-column bits for all inherited columns. @@ -1708,6 +1708,7 @@ adjust_appendrel_attrs_mutator(Node *node, foreach(lc, fields) { Var *field = (Var *) lfirst(lc); + field->varlevelsup += context->sublevels_up; } rowexpr = makeNode(RowExpr); @@ -1887,7 +1888,7 @@ adjust_relid_set(Relids relids, Index oldrelid, Index newrelid) * * The expressions have already been fixed, but we have to make sure that * the target resnos match the child table (they may not, in the case of - * a column that was added after-the-fact by ALTER TABLE). In some cases + * a column that was added after-the-fact by ALTER TABLE). In some cases * this can force us to re-order the tlist to preserve resno ordering. * (We do all this work in special cases so that preptlist.c is fast for * the typical case.) diff --git a/src/backend/optimizer/util/clauses.c b/src/backend/optimizer/util/clauses.c index 3f307e6464c..97dacaaac19 100644 --- a/src/backend/optimizer/util/clauses.c +++ b/src/backend/optimizer/util/clauses.c @@ -540,7 +540,7 @@ count_agg_clauses_walker(Node *node, count_agg_clauses_context *context) /* * If the transition type is pass-by-value then it doesn't add - * anything to the required size of the hashtable. If it is + * anything to the required size of the hashtable. If it is * pass-by-reference then we have to add the estimated size of the * value itself, plus palloc overhead. */ @@ -835,7 +835,7 @@ contain_subplans_walker(Node *node, void *context) * Recursively search for mutable functions within a clause. * * Returns true if any mutable function (or operator implemented by a - * mutable function) is found. This test is needed so that we don't + * mutable function) is found. This test is needed so that we don't * mistakenly think that something like "WHERE random() < 0.5" can be treated * as a constant qualification. * @@ -962,7 +962,7 @@ contain_mutable_functions_walker(Node *node, void *context) * invalid conversions of volatile expressions into indexscan quals. * * We will recursively look into Query nodes (i.e., SubLink sub-selects) - * but not into SubPlans. This is a bit odd, but intentional. If we are + * but not into SubPlans. This is a bit odd, but intentional. If we are * looking at a SubLink, we are probably deciding whether a query tree * transformation is safe, and a contained sub-select should affect that; * for example, duplicating a sub-select containing a volatile function @@ -1207,7 +1207,7 @@ contain_volatile_functions_not_nextval_walker(Node *node, void *context) * The idea here is that the caller has verified that the expression contains * one or more Var or Param nodes (as appropriate for the caller's need), and * now wishes to prove that the expression result will be NULL if any of these - * inputs is NULL. If we return false, then the proof succeeded. + * inputs is NULL. If we return false, then the proof succeeded. */ bool contain_nonstrict_functions(Node *clause) @@ -1326,7 +1326,7 @@ contain_nonstrict_functions_walker(Node *node, void *context) * Recursively search for leaky functions within a clause. * * Returns true if any function call with side-effect may be present in the - * clause. Qualifiers from outside the a security_barrier view should not + * clause. Qualifiers from outside the a security_barrier view should not * be pushed down into the view, lest the contents of tuples intended to be * filtered out be revealed via side effects. */ @@ -1465,7 +1465,7 @@ contain_leaky_functions_walker(Node *node, void *context) * * Returns the set of all Relids that are referenced in the clause in such * a way that the clause cannot possibly return TRUE if any of these Relids - * is an all-NULL row. (It is OK to err on the side of conservatism; hence + * is an all-NULL row. (It is OK to err on the side of conservatism; hence * the analysis here is simplistic.) * * The semantics here are subtly different from contain_nonstrict_functions: @@ -1571,7 +1571,7 @@ find_nonnullable_rels_walker(Node *node, bool top_level) * could be FALSE (hence not NULL). However, if *all* the * arms produce NULL then the result is NULL, so we can take * the intersection of the sets of nonnullable rels, just as - * for OR. Fall through to share code. + * for OR. Fall through to share code. */ /* FALL THRU */ case OR_EXPR: @@ -1779,7 +1779,7 @@ find_nonnullable_vars_walker(Node *node, bool top_level) * could be FALSE (hence not NULL). However, if *all* the * arms produce NULL then the result is NULL, so we can take * the intersection of the sets of nonnullable vars, just as - * for OR. Fall through to share code. + * for OR. Fall through to share code. */ /* FALL THRU */ case OR_EXPR: @@ -2049,7 +2049,7 @@ is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK) * variables of the current query level and no uses of volatile functions. * Such an expr is not necessarily a true constant: it can still contain * Params and outer-level Vars, not to mention functions whose results - * may vary from one statement to the next. However, the expr's value + * may vary from one statement to the next. However, the expr's value * will be constant over any one scan of the current query, so it can be * used as, eg, an indexscan key. * @@ -2255,7 +2255,7 @@ rowtype_field_matches(Oid rowtypeid, int fieldnum, * expression tree, for example "2 + 2" => "4". More interestingly, * we can reduce certain boolean expressions even when they contain * non-constant subexpressions: "x OR true" => "true" no matter what - * the subexpression x is. (XXX We assume that no such subexpression + * the subexpression x is. (XXX We assume that no such subexpression * will have important side-effects, which is not necessarily a good * assumption in the presence of user-defined functions; do we need a * pg_proc flag that prevents discarding the execution of a function?) @@ -2268,7 +2268,7 @@ rowtype_field_matches(Oid rowtypeid, int fieldnum, * * Whenever a function is eliminated from the expression by means of * constant-expression evaluation or inlining, we add the function to - * root->glob->invalItems. This ensures the plan is known to depend on + * root->glob->invalItems. This ensures the plan is known to depend on * such functions, even though they aren't referenced anymore. * * We assume that the tree has already been type-checked and contains @@ -2451,7 +2451,7 @@ eval_const_expressions_mutator(Node *node, /* * Code for op/func reduction is pretty bulky, so split it out - * as a separate function. Note: exprTypmod normally returns + * as a separate function. Note: exprTypmod normally returns * -1 for a FuncExpr, but not when the node is recognizably a * length coercion; we want to preserve the typmod in the * eventual Const if so. @@ -2495,7 +2495,7 @@ eval_const_expressions_mutator(Node *node, OpExpr *newexpr; /* - * Need to get OID of underlying function. Okay to scribble + * Need to get OID of underlying function. Okay to scribble * on input to this extent. */ set_opfuncid(expr); @@ -2598,7 +2598,7 @@ eval_const_expressions_mutator(Node *node, /* (NOT okay to try to inline it, though!) */ /* - * Need to get OID of underlying function. Okay to + * Need to get OID of underlying function. Okay to * scribble on input to this extent. */ set_opfuncid((OpExpr *) expr); /* rely on struct @@ -2963,13 +2963,13 @@ eval_const_expressions_mutator(Node *node, * TRUE: drop all remaining alternatives * If the first non-FALSE alternative is a constant TRUE, * we can simplify the entire CASE to that alternative's - * expression. If there are no non-FALSE alternatives, + * expression. If there are no non-FALSE alternatives, * we simplify the entire CASE to the default result (ELSE). * * If we have a simple-form CASE with constant test * expression, we substitute the constant value for contained * CaseTestExpr placeholder nodes, so that we have the - * opportunity to reduce constant test conditions. For + * opportunity to reduce constant test conditions. For * example this allows * CASE 0 WHEN 0 THEN 1 ELSE 1/0 END * to reduce to 1 rather than drawing a divide-by-0 error. @@ -3191,7 +3191,7 @@ eval_const_expressions_mutator(Node *node, { /* * We can optimize field selection from a whole-row Var into a - * simple Var. (This case won't be generated directly by the + * simple Var. (This case won't be generated directly by the * parser, because ParseComplexProjection short-circuits it. * But it can arise while simplifying functions.) Also, we * can optimize field selection from a RowExpr construct. @@ -3449,7 +3449,7 @@ simplify_or_arguments(List *args, /* * Since the parser considers OR to be a binary operator, long OR lists * become deeply nested expressions. We must flatten these into long - * argument lists of a single OR operator. To avoid blowing out the stack + * argument lists of a single OR operator. To avoid blowing out the stack * with recursion of eval_const_expressions, we resort to some tenseness * here: we keep a list of not-yet-processed inputs, and handle flattening * of nested ORs by prepending to the to-do list instead of recursing. @@ -3497,7 +3497,7 @@ simplify_or_arguments(List *args, } /* - * OK, we have a const-simplified non-OR argument. Process it per + * OK, we have a const-simplified non-OR argument. Process it per * comments above. */ if (IsA(arg, Const)) @@ -3732,7 +3732,7 @@ simplify_function(Oid funcid, Oid result_type, int32 result_typmod, * deliver a constant result, use a transform function to generate a * substitute node tree, or expand in-line the body of the function * definition (which only works for simple SQL-language functions, but - * that is a common case). Each case needs access to the function's + * that is a common case). Each case needs access to the function's * pg_proc tuple, so fetch it just once. * * Note: the allow_non_const flag suppresses both the second and third @@ -3770,7 +3770,7 @@ simplify_function(Oid funcid, Oid result_type, int32 result_typmod, if (!newexpr && allow_non_const && OidIsValid(func_form->protransform)) { /* - * Build a dummy FuncExpr node containing the simplified arg list. We + * Build a dummy FuncExpr node containing the simplified arg list. We * use this approach to present a uniform interface to the transform * function regardless of how the function is actually being invoked. */ @@ -3978,7 +3978,7 @@ fetch_function_defaults(HeapTuple func_tuple) * * It is possible for some of the defaulted arguments to be polymorphic; * therefore we can't assume that the default expressions have the correct - * data types already. We have to re-resolve polymorphics and do coercion + * data types already. We have to re-resolve polymorphics and do coercion * just like the parser did. * * This should be a no-op if there are no polymorphic arguments, @@ -4141,7 +4141,7 @@ evaluate_function(Oid funcid, Oid result_type, int32 result_typmod, * do not re-expand them. Also, if a parameter is used more than once * in the SQL-function body, we require it not to contain any volatile * functions (volatiles might deliver inconsistent answers) nor to be - * unreasonably expensive to evaluate. The expensiveness check not only + * unreasonably expensive to evaluate. The expensiveness check not only * prevents us from doing multiple evaluations of an expensive parameter * at runtime, but is a safety value to limit growth of an expression due * to repeated inlining. @@ -4184,7 +4184,7 @@ inline_function(Oid funcid, Oid result_type, Oid result_collid, /* * Forget it if the function is not SQL-language or has other showstopper - * properties. (The nargs check is just paranoia.) + * properties. (The nargs check is just paranoia.) */ if (funcform->prolang != SQLlanguageId || funcform->prosecdef || @@ -4262,7 +4262,7 @@ inline_function(Oid funcid, Oid result_type, Oid result_collid, /* * We just do parsing and parse analysis, not rewriting, because rewriting * will not affect table-free-SELECT-only queries, which is all that we - * care about. Also, we can punt as soon as we detect more than one + * care about. Also, we can punt as soon as we detect more than one * command in the function body. */ raw_parsetree_list = pg_parse_query(src); @@ -4304,7 +4304,7 @@ inline_function(Oid funcid, Oid result_type, Oid result_collid, /* * Make sure the function (still) returns what it's declared to. This * will raise an error if wrong, but that's okay since the function would - * fail at runtime anyway. Note that check_sql_fn_retval will also insert + * fail at runtime anyway. Note that check_sql_fn_retval will also insert * a RelabelType if needed to make the tlist expression match the declared * type of the function. * @@ -4349,7 +4349,7 @@ inline_function(Oid funcid, Oid result_type, Oid result_collid, /* * We may be able to do it; there are still checks on parameter usage to * make, but those are most easily done in combination with the actual - * substitution of the inputs. So start building expression with inputs + * substitution of the inputs. So start building expression with inputs * substituted. */ usecounts = (int *) palloc0(funcform->pronargs * sizeof(int)); @@ -4549,7 +4549,7 @@ evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod, fix_opfuncids((Node *) expr); /* - * Prepare expr for execution. (Note: we can't use ExecPrepareExpr + * Prepare expr for execution. (Note: we can't use ExecPrepareExpr * because it'd result in recursively invoking eval_const_expressions.) */ exprstate = ExecInitExpr(expr, NULL); @@ -4671,7 +4671,7 @@ inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte) * Refuse to inline if the arguments contain any volatile functions or * sub-selects. Volatile functions are rejected because inlining may * result in the arguments being evaluated multiple times, risking a - * change in behavior. Sub-selects are rejected partly for implementation + * change in behavior. Sub-selects are rejected partly for implementation * reasons (pushing them down another level might change their behavior) * and partly because they're likely to be expensive and so multiple * evaluation would be bad. @@ -4698,7 +4698,7 @@ inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte) /* * Forget it if the function is not SQL-language or has other showstopper - * properties. In particular it mustn't be declared STRICT, since we + * properties. In particular it mustn't be declared STRICT, since we * couldn't enforce that. It also mustn't be VOLATILE, because that is * supposed to cause it to be executed with its own snapshot, rather than * sharing the snapshot of the calling query. (Rechecking proretset is @@ -4728,9 +4728,9 @@ inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte) /* * When we call eval_const_expressions below, it might try to add items to - * root->glob->invalItems. Since it is running in the temp context, those + * root->glob->invalItems. Since it is running in the temp context, those * items will be in that context, and will need to be copied out if we're - * successful. Temporarily reset the list so that we can keep those items + * successful. Temporarily reset the list so that we can keep those items * separate from the pre-existing list contents. */ saveInvalItems = root->glob->invalItems; @@ -4760,7 +4760,7 @@ inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte) /* * Run eval_const_expressions on the function call. This is necessary to * ensure that named-argument notation is converted to positional notation - * and any default arguments are inserted. It's a bit of overkill for the + * and any default arguments are inserted. It's a bit of overkill for the * arguments, since they'll get processed again later, but no harm will be * done. */ @@ -4812,7 +4812,7 @@ inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte) /* * Make sure the function (still) returns what it's declared to. This * will raise an error if wrong, but that's okay since the function would - * fail at runtime anyway. Note that check_sql_fn_retval will also insert + * fail at runtime anyway. Note that check_sql_fn_retval will also insert * RelabelType(s) and/or NULL columns if needed to make the tlist * expression(s) match the declared type of the function. * diff --git a/src/backend/optimizer/util/joininfo.c b/src/backend/optimizer/util/joininfo.c index a6421580f9b..0418946d714 100644 --- a/src/backend/optimizer/util/joininfo.c +++ b/src/backend/optimizer/util/joininfo.c @@ -83,7 +83,7 @@ have_relevant_joinclause(PlannerInfo *root, * Add 'restrictinfo' to the joininfo list of each relation it requires. * * Note that the same copy of the restrictinfo node is linked to by all the - * lists it is in. This allows us to exploit caching of information about + * lists it is in. This allows us to exploit caching of information about * the restriction clause (but we must be careful that the information does * not depend on context). * diff --git a/src/backend/optimizer/util/orclauses.c b/src/backend/optimizer/util/orclauses.c index e9fd47bffbe..9e954d0d35f 100644 --- a/src/backend/optimizer/util/orclauses.c +++ b/src/backend/optimizer/util/orclauses.c @@ -50,7 +50,7 @@ static void consider_new_or_clause(PlannerInfo *root, RelOptInfo *rel, * * The added quals are partially redundant with the original OR, and therefore * would cause the size of the joinrel to be underestimated when it is finally - * formed. (This would be true of a full transformation to CNF as well; the + * formed. (This would be true of a full transformation to CNF as well; the * fault is not really in the transformation, but in clauselist_selectivity's * inability to recognize redundant conditions.) We can compensate for this * redundancy by changing the cached selectivity of the original OR clause, @@ -60,10 +60,10 @@ static void consider_new_or_clause(PlannerInfo *root, RelOptInfo *rel, * and on the fact that the same RestrictInfo node will appear in every * joininfo list that might be used when the joinrel is formed. * And it doesn't work in cases where the size estimation is nonlinear - * (i.e., outer and IN joins). But it beats not doing anything. + * (i.e., outer and IN joins). But it beats not doing anything. * * We examine each base relation to see if join clauses associated with it - * contain extractable restriction conditions. If so, add those conditions + * contain extractable restriction conditions. If so, add those conditions * to the rel's baserestrictinfo and update the cached selectivities of the * join clauses. Note that the same join clause will be examined afresh * from the point of view of each baserel that participates in it, so its @@ -129,7 +129,7 @@ static bool is_safe_restriction_clause_for(RestrictInfo *rinfo, RelOptInfo *rel) { /* - * We want clauses that mention the rel, and only the rel. So in + * We want clauses that mention the rel, and only the rel. So in * particular pseudoconstant clauses can be rejected quickly. Then check * the clause's Var membership. */ @@ -168,7 +168,7 @@ extract_or_clause(RestrictInfo *or_rinfo, RelOptInfo *rel) * in those nodes to make is_safe_restriction_clause_for()'s checks * cheaper. We'll strip those nodes from the returned tree, though, * meaning that fresh ones will be built if the clause is accepted as a - * restriction clause. This might seem wasteful --- couldn't we re-use + * restriction clause. This might seem wasteful --- couldn't we re-use * the existing RestrictInfos? But that'd require assuming that * selectivity and other cached data is computed exactly the same way for * a restriction clause as for a join clause, which seems undesirable. @@ -193,7 +193,7 @@ extract_or_clause(RestrictInfo *or_rinfo, RelOptInfo *rel) if (restriction_is_or_clause(rinfo)) { /* - * Recurse to deal with nested OR. Note we *must* recurse + * Recurse to deal with nested OR. Note we *must* recurse * here, this isn't just overly-tense optimization: we * have to descend far enough to find and strip all * RestrictInfos in the expression. @@ -314,7 +314,7 @@ consider_new_or_clause(PlannerInfo *root, RelOptInfo *rel, SpecialJoinInfo sjinfo; /* - * Make up a SpecialJoinInfo for JOIN_INNER semantics. (Compare + * Make up a SpecialJoinInfo for JOIN_INNER semantics. (Compare * approx_tuple_count() in costsize.c.) */ sjinfo.type = T_SpecialJoinInfo; diff --git a/src/backend/optimizer/util/pathnode.c b/src/backend/optimizer/util/pathnode.c index b79af7af4e0..4e05dcd2463 100644 --- a/src/backend/optimizer/util/pathnode.c +++ b/src/backend/optimizer/util/pathnode.c @@ -127,11 +127,11 @@ compare_fractional_path_costs(Path *path1, Path *path2, * * The fuzz_factor argument must be 1.0 plus delta, where delta is the * fraction of the smaller cost that is considered to be a significant - * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit + * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit * be 1% of the smaller cost. * * The two paths are said to have "equal" costs if both startup and total - * costs are fuzzily the same. Path1 is said to be better than path2 if + * costs are fuzzily the same. Path1 is said to be better than path2 if * it has fuzzily better startup cost and fuzzily no worse total cost, * or if it has fuzzily better total cost and fuzzily no worse startup cost. * Path2 is better than path1 if the reverse holds. Finally, if one path @@ -207,12 +207,12 @@ compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor, * * cheapest_total_path is normally the cheapest-total-cost unparameterized * path; but if there are no unparameterized paths, we assign it to be the - * best (cheapest least-parameterized) parameterized path. However, only + * best (cheapest least-parameterized) parameterized path. However, only * unparameterized paths are considered candidates for cheapest_startup_path, * so that will be NULL if there are no unparameterized paths. * * The cheapest_parameterized_paths list collects all parameterized paths - * that have survived the add_path() tournament for this relation. (Since + * that have survived the add_path() tournament for this relation. (Since * add_path ignores pathkeys and startup cost for a parameterized path, * these will be paths that have best total cost or best row count for their * parameterization.) cheapest_parameterized_paths always includes the @@ -431,7 +431,7 @@ add_path(RelOptInfo *parent_rel, Path *new_path) p1_next = lnext(p1); /* - * Do a fuzzy cost comparison with 1% fuzziness limit. (XXX does this + * Do a fuzzy cost comparison with 1% fuzziness limit. (XXX does this * percentage need to be user-configurable?) */ costcmp = compare_path_costs_fuzzily(new_path, old_path, 1.01, @@ -607,7 +607,7 @@ add_path(RelOptInfo *parent_rel, Path *new_path) * and have lower bounds for its costs. * * Note that we do not know the path's rowcount, since getting an estimate for - * that is too expensive to do before prechecking. We assume here that paths + * that is too expensive to do before prechecking. We assume here that paths * of a superset parameterization will generate fewer rows; if that holds, * then paths with different parameterizations cannot dominate each other * and so we can simply ignore existing paths of another parameterization. @@ -907,7 +907,7 @@ create_append_path(RelOptInfo *rel, List *subpaths, Relids required_outer) * Compute rows and costs as sums of subplan rows and costs. We charge * nothing extra for the Append itself, which perhaps is too optimistic, * but since it doesn't do any selection or projection, it is a pretty - * cheap node. If you change this, see also make_append(). + * cheap node. If you change this, see also make_append(). */ pathnode->path.rows = 0; pathnode->path.startup_cost = 0; @@ -1456,7 +1456,7 @@ translate_sub_tlist(List *tlist, int relid) * * colnos is an integer list of output column numbers (resno's). We are * interested in whether rows consisting of just these columns are certain - * to be distinct. "Distinctness" is defined according to whether the + * to be distinct. "Distinctness" is defined according to whether the * corresponding upper-level equality operators listed in opids would think * the values are distinct. (Note: the opids entries could be cross-type * operators, and thus not exactly the equality operators that the subquery @@ -1577,7 +1577,7 @@ query_is_distinct_for(Query *query, List *colnos, List *opids) * distinct_col_search - subroutine for query_is_distinct_for * * If colno is in colnos, return the corresponding element of opids, - * else return InvalidOid. (We expect colnos does not contain duplicates, + * else return InvalidOid. (We expect colnos does not contain duplicates, * so the result is well-defined.) */ static Oid @@ -1977,10 +1977,10 @@ create_hashjoin_path(PlannerInfo *root, /* * A hashjoin never has pathkeys, since its output ordering is - * unpredictable due to possible batching. XXX If the inner relation is + * unpredictable due to possible batching. XXX If the inner relation is * small enough, we could instruct the executor that it must not batch, * and then we could assume that the output inherits the outer relation's - * ordering, which might save a sort step. However there is considerable + * ordering, which might save a sort step. However there is considerable * downside if our estimate of the inner relation size is badly off. For * the moment we don't risk it. (Note also that if we wanted to take this * seriously, joinpath.c would have to consider many more paths for the @@ -2007,7 +2007,7 @@ create_hashjoin_path(PlannerInfo *root, * same parameterization level, ensuring that they all enforce the same set * of join quals (and thus that that parameterization can be attributed to * an append path built from such paths). Currently, only a few path types - * are supported here, though more could be added at need. We return NULL + * are supported here, though more could be added at need. We return NULL * if we can't reparameterize the given path. * * Note: we intentionally do not pass created paths to add_path(); it would @@ -2039,7 +2039,7 @@ reparameterize_path(PlannerInfo *root, Path *path, /* * We can't use create_index_path directly, and would not want * to because it would re-compute the indexqual conditions - * which is wasted effort. Instead we hack things a bit: + * which is wasted effort. Instead we hack things a bit: * flat-copy the path node, revise its param_info, and redo * the cost estimate. */ diff --git a/src/backend/optimizer/util/placeholder.c b/src/backend/optimizer/util/placeholder.c index 1172d24b9a1..8d7c4feca46 100644 --- a/src/backend/optimizer/util/placeholder.c +++ b/src/backend/optimizer/util/placeholder.c @@ -60,7 +60,7 @@ make_placeholder_expr(PlannerInfo *root, Expr *expr, Relids phrels) * We build PlaceHolderInfos only for PHVs that are still present in the * simplified query passed to query_planner(). * - * Note: this should only be called after query_planner() has started. Also, + * Note: this should only be called after query_planner() has started. Also, * create_new_ph must not be TRUE after deconstruct_jointree begins, because * make_outerjoininfo assumes that we already know about all placeholders. */ @@ -94,7 +94,7 @@ find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv, /* * Any referenced rels that are outside the PHV's syntactic scope are * LATERAL references, which should be included in ph_lateral but not in - * ph_eval_at. If no referenced rels are within the syntactic scope, + * ph_eval_at. If no referenced rels are within the syntactic scope, * force evaluation at the syntactic location. */ rels_used = pull_varnos((Node *) phv->phexpr); diff --git a/src/backend/optimizer/util/plancat.c b/src/backend/optimizer/util/plancat.c index 73ba2f60b2d..b2becfa6765 100644 --- a/src/backend/optimizer/util/plancat.c +++ b/src/backend/optimizer/util/plancat.c @@ -427,12 +427,12 @@ estimate_rel_size(Relation rel, int32 *attr_widths, * minimum size estimate of 10 pages. The idea here is to avoid * assuming a newly-created table is really small, even if it * currently is, because that may not be true once some data gets - * loaded into it. Once a vacuum or analyze cycle has been done + * loaded into it. Once a vacuum or analyze cycle has been done * on it, it's more reasonable to believe the size is somewhat * stable. * * (Note that this is only an issue if the plan gets cached and - * used again after the table has been filled. What we're trying + * used again after the table has been filled. What we're trying * to avoid is using a nestloop-type plan on a table that has * grown substantially since the plan was made. Normally, * autovacuum/autoanalyze will occur once enough inserts have @@ -441,7 +441,7 @@ estimate_rel_size(Relation rel, int32 *attr_widths, * such as temporary tables.) * * We approximate "never vacuumed" by "has relpages = 0", which - * means this will also fire on genuinely empty relations. Not + * means this will also fire on genuinely empty relations. Not * great, but fortunately that's a seldom-seen case in the real * world, and it shouldn't degrade the quality of the plan too * much anyway to err in this direction. @@ -786,7 +786,7 @@ relation_excluded_by_constraints(PlannerInfo *root, return false; /* - * OK to fetch the constraint expressions. Include "col IS NOT NULL" + * OK to fetch the constraint expressions. Include "col IS NOT NULL" * expressions for attnotnull columns, in case we can refute those. */ constraint_pred = get_relation_constraints(root, rte->relid, rel, true); @@ -834,7 +834,7 @@ relation_excluded_by_constraints(PlannerInfo *root, * Exception: if there are any dropped columns, we punt and return NIL. * Ideally we would like to handle the dropped-column case too. However this * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc - * for a tlist that includes vars of no-longer-existent types. In theory we + * for a tlist that includes vars of no-longer-existent types. In theory we * could dig out the required info from the pg_attribute entries of the * relation, but that data is not readily available to ExecTypeFromTL. * For now, we don't apply the physical-tlist optimization when there are diff --git a/src/backend/optimizer/util/predtest.c b/src/backend/optimizer/util/predtest.c index eadd2d5104a..9d61a4d71c2 100644 --- a/src/backend/optimizer/util/predtest.c +++ b/src/backend/optimizer/util/predtest.c @@ -133,7 +133,7 @@ predicate_implied_by(List *predicate_list, List *restrictinfo_list) /* * If either input is a single-element list, replace it with its lone - * member; this avoids one useless level of AND-recursion. We only need + * member; this avoids one useless level of AND-recursion. We only need * to worry about this at top level, since eval_const_expressions should * have gotten rid of any trivial ANDs or ORs below that. */ @@ -191,7 +191,7 @@ predicate_refuted_by(List *predicate_list, List *restrictinfo_list) /* * If either input is a single-element list, replace it with its lone - * member; this avoids one useless level of AND-recursion. We only need + * member; this avoids one useless level of AND-recursion. We only need * to worry about this at top level, since eval_const_expressions should * have gotten rid of any trivial ANDs or ORs below that. */ @@ -225,7 +225,7 @@ predicate_refuted_by(List *predicate_list, List *restrictinfo_list) * OR-expr A => AND-expr B iff: A => each of B's components * OR-expr A => OR-expr B iff: each of A's components => any of B's * - * An "atom" is anything other than an AND or OR node. Notice that we don't + * An "atom" is anything other than an AND or OR node. Notice that we don't * have any special logic to handle NOT nodes; these should have been pushed * down or eliminated where feasible by prepqual.c. * @@ -658,7 +658,7 @@ predicate_refuted_by_recurse(Node *clause, Node *predicate) * We cannot make the stronger conclusion that B is refuted if B * implies A's arg; that would only prove that B is not-TRUE, not * that it's not NULL either. Hence use equal() rather than - * predicate_implied_by_recurse(). We could do the latter if we + * predicate_implied_by_recurse(). We could do the latter if we * ever had a need for the weak form of refutation. */ not_arg = extract_strong_not_arg(clause); @@ -820,7 +820,7 @@ predicate_classify(Node *clause, PredIterInfo info) } /* - * PredIterInfo routines for iterating over regular Lists. The iteration + * PredIterInfo routines for iterating over regular Lists. The iteration * state variable is the next ListCell to visit. */ static void @@ -1014,13 +1014,13 @@ arrayexpr_cleanup_fn(PredIterInfo info) * implies another: * * A simple and general way is to see if they are equal(); this works for any - * kind of expression. (Actually, there is an implied assumption that the + * kind of expression. (Actually, there is an implied assumption that the * functions in the expression are immutable, ie dependent only on their input * arguments --- but this was checked for the predicate by the caller.) * * When the predicate is of the form "foo IS NOT NULL", we can conclude that * the predicate is implied if the clause is a strict operator or function - * that has "foo" as an input. In this case the clause must yield NULL when + * that has "foo" as an input. In this case the clause must yield NULL when * "foo" is NULL, which we can take as equivalent to FALSE because we know * we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is * already known immutable, so the clause will certainly always fail.) @@ -1244,7 +1244,7 @@ list_member_strip(List *list, Expr *datum) * * The strategy numbers defined by btree indexes (see access/skey.h) are: * (1) < (2) <= (3) = (4) >= (5) > - * and in addition we use (6) to represent <>. <> is not a btree-indexable + * and in addition we use (6) to represent <>. <> is not a btree-indexable * operator, but we assume here that if an equality operator of a btree * opfamily has a negator operator, the negator behaves as <> for the opfamily. * (This convention is also known to get_op_btree_interpretation().) @@ -1328,7 +1328,7 @@ static const StrategyNumber BT_refute_table[6][6] = { * if not able to prove it. * * What we look for here is binary boolean opclauses of the form - * "foo op constant", where "foo" is the same in both clauses. The operators + * "foo op constant", where "foo" is the same in both clauses. The operators * and constants can be different but the operators must be in the same btree * operator family. We use the above operator implication tables to * derive implications between nonidentical clauses. (Note: "foo" is known @@ -1418,7 +1418,7 @@ btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it) /* * Check for matching subexpressions on the non-Const sides. We used to * only allow a simple Var, but it's about as easy to allow any - * expression. Remember we already know that the pred expression does not + * expression. Remember we already know that the pred expression does not * contain any non-immutable functions, so identical expressions should * yield identical results. */ @@ -1690,7 +1690,7 @@ get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it) * Last check: test_op must be immutable. * * Note that we require only the test_op to be immutable, not the - * original clause_op. (pred_op is assumed to have been checked + * original clause_op. (pred_op is assumed to have been checked * immutable by the caller.) Essentially we are assuming that the * opfamily is consistent even if it contains operators that are * merely stable. diff --git a/src/backend/optimizer/util/relnode.c b/src/backend/optimizer/util/relnode.c index 8ae8f551212..c938c2700f9 100644 --- a/src/backend/optimizer/util/relnode.c +++ b/src/backend/optimizer/util/relnode.c @@ -262,7 +262,7 @@ RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids) { /* - * Switch to using hash lookup when list grows "too long". The threshold + * Switch to using hash lookup when list grows "too long". The threshold * is arbitrary and is known only here. */ if (!root->join_rel_hash && list_length(root->join_rel_list) > 32) @@ -448,7 +448,7 @@ build_join_rel(PlannerInfo *root, /* * Also, if dynamic-programming join search is active, add the new joinrel - * to the appropriate sublist. Note: you might think the Assert on number + * to the appropriate sublist. Note: you might think the Assert on number * of members should be for equality, but some of the level 1 rels might * have been joinrels already, so we can only assert <=. */ @@ -529,7 +529,7 @@ build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, * the join list need only be computed once for any join RelOptInfo. * The join list is fully determined by the set of rels making up the * joinrel, so we should get the same results (up to ordering) from any - * candidate pair of sub-relations. But the restriction list is whatever + * candidate pair of sub-relations. But the restriction list is whatever * is not handled in the sub-relations, so it depends on which * sub-relations are considered. * @@ -538,7 +538,7 @@ build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, * we put it into the joininfo list for the joinrel. Otherwise, * the clause is now a restrict clause for the joined relation, and we * return it to the caller of build_joinrel_restrictlist() to be stored in - * join paths made from this pair of sub-relations. (It will not need to + * join paths made from this pair of sub-relations. (It will not need to * be considered further up the join tree.) * * In many case we will find the same RestrictInfos in both input @@ -557,7 +557,7 @@ build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, * * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass * up to the join relation. I believe this is no longer necessary, because - * RestrictInfo nodes are no longer context-dependent. Instead, just include + * RestrictInfo nodes are no longer context-dependent. Instead, just include * the original nodes in the lists made for the join relation. */ static List * @@ -577,7 +577,7 @@ build_joinrel_restrictlist(PlannerInfo *root, result = subbuild_joinrel_restrictlist(joinrel, inner_rel->joininfo, result); /* - * Add on any clauses derived from EquivalenceClasses. These cannot be + * Add on any clauses derived from EquivalenceClasses. These cannot be * redundant with the clauses in the joininfo lists, so don't bother * checking. */ @@ -945,7 +945,7 @@ get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, *restrict_clauses); /* - * And now we can build the ParamPathInfo. No point in saving the + * And now we can build the ParamPathInfo. No point in saving the * input-pair-dependent clause list, though. * * Note: in GEQO mode, we'll be called in a temporary memory context, but @@ -965,8 +965,8 @@ get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, * Get the ParamPathInfo for a parameterized path for an append relation. * * For an append relation, the rowcount estimate will just be the sum of - * the estimates for its children. However, we still need a ParamPathInfo - * to flag the fact that the path requires parameters. So this just creates + * the estimates for its children. However, we still need a ParamPathInfo + * to flag the fact that the path requires parameters. So this just creates * a suitable struct with zero ppi_rows (and no ppi_clauses either, since * the Append node isn't responsible for checking quals). */ diff --git a/src/backend/optimizer/util/restrictinfo.c b/src/backend/optimizer/util/restrictinfo.c index 62de5905232..e861ce66576 100644 --- a/src/backend/optimizer/util/restrictinfo.c +++ b/src/backend/optimizer/util/restrictinfo.c @@ -210,7 +210,7 @@ make_restrictinfo_internal(Expr *clause, /* * Fill in all the cacheable fields with "not yet set" markers. None of - * these will be computed until/unless needed. Note in particular that we + * these will be computed until/unless needed. Note in particular that we * don't mark a binary opclause as mergejoinable or hashjoinable here; * that happens only if it appears in the right context (top level of a * joinclause list). diff --git a/src/backend/optimizer/util/tlist.c b/src/backend/optimizer/util/tlist.c index 5e26f3b57e3..f1f1be1b7fe 100644 --- a/src/backend/optimizer/util/tlist.c +++ b/src/backend/optimizer/util/tlist.c @@ -26,7 +26,7 @@ /* * tlist_member * Finds the (first) member of the given tlist whose expression is - * equal() to the given expression. Result is NULL if no such member. + * equal() to the given expression. Result is NULL if no such member. */ TargetEntry * tlist_member(Node *node, List *targetlist) diff --git a/src/backend/optimizer/util/var.c b/src/backend/optimizer/util/var.c index d629fcd90d2..d4f46b8d461 100644 --- a/src/backend/optimizer/util/var.c +++ b/src/backend/optimizer/util/var.c @@ -165,7 +165,7 @@ pull_varnos_walker(Node *node, pull_varnos_context *context) * lower than that if it references only a subset of the rels in its * syntactic scope. It might also contain lateral references, but we * should ignore such references when computing the set of varnos in - * an expression tree. Also, if the PHV contains no variables within + * an expression tree. Also, if the PHV contains no variables within * its syntactic scope, it will be forced to be evaluated exactly at * the syntactic scope, so take that as the relid set. */ @@ -364,7 +364,7 @@ contain_var_clause_walker(Node *node, void *context) * * Returns true if any such Var found. * - * Will recurse into sublinks. Also, may be invoked directly on a Query. + * Will recurse into sublinks. Also, may be invoked directly on a Query. */ bool contain_vars_of_level(Node *node, int levelsup) @@ -424,10 +424,10 @@ contain_vars_of_level_walker(Node *node, int *sublevels_up) * Find the parse location of any Var of the specified query level. * * Returns -1 if no such Var is in the querytree, or if they all have - * unknown parse location. (The former case is probably caller error, + * unknown parse location. (The former case is probably caller error, * but we don't bother to distinguish it from the latter case.) * - * Will recurse into sublinks. Also, may be invoked directly on a Query. + * Will recurse into sublinks. Also, may be invoked directly on a Query. * * Note: it might seem appropriate to merge this functionality into * contain_vars_of_level, but that would complicate that function's API. @@ -514,7 +514,7 @@ locate_var_of_level_walker(Node *node, * Upper-level vars (with varlevelsup > 0) should not be seen here, * likewise for upper-level Aggrefs and PlaceHolderVars. * - * Returns list of nodes found. Note the nodes themselves are not + * Returns list of nodes found. Note the nodes themselves are not * copied, only referenced. * * Does not examine subqueries, therefore must only be used after reduction @@ -591,7 +591,7 @@ pull_var_clause_walker(Node *node, pull_var_clause_context *context) * flatten_join_alias_vars * Replace Vars that reference JOIN outputs with references to the original * relation variables instead. This allows quals involving such vars to be - * pushed down. Whole-row Vars that reference JOIN relations are expanded + * pushed down. Whole-row Vars that reference JOIN relations are expanded * into RowExpr constructs that name the individual output Vars. This * is necessary since we will not scan the JOIN as a base relation, which * is the only way that the executor can directly handle whole-row Vars. @@ -603,7 +603,7 @@ pull_var_clause_walker(Node *node, pull_var_clause_context *context) * entries might now be arbitrary expressions, not just Vars. This affects * this function in one important way: we might find ourselves inserting * SubLink expressions into subqueries, and we must make sure that their - * Query.hasSubLinks fields get set to TRUE if so. If there are any + * Query.hasSubLinks fields get set to TRUE if so. If there are any * SubLinks in the join alias lists, the outer Query should already have * hasSubLinks = TRUE, so this is only relevant to un-flattened subqueries. * |