summaryrefslogtreecommitdiff
path: root/contrib/pgcrypto/crypt-sha.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/pgcrypto/crypt-sha.c')
-rw-r--r--contrib/pgcrypto/crypt-sha.c640
1 files changed, 640 insertions, 0 deletions
diff --git a/contrib/pgcrypto/crypt-sha.c b/contrib/pgcrypto/crypt-sha.c
new file mode 100644
index 00000000000..862f3fb9a68
--- /dev/null
+++ b/contrib/pgcrypto/crypt-sha.c
@@ -0,0 +1,640 @@
+/*
+ * contrib/pgcrypto/crypt-sha.c
+ *
+ * This implements shacrypt password hash functions and follows the
+ * public available reference implementation from
+ *
+ * https://www.akkadia.org/drepper/SHA-crypt.txt
+ *
+ * This code is public domain.
+ *
+ * Please see the inline comments for details about the algorithm.
+ *
+ * Basically the following code implements password hashing with sha256 and
+ * sha512 digest via OpenSSL. Additionally, an extended salt generation (see
+ * crypt-gensalt.c for details) is provided, which generates a salt suitable
+ * for either sha256crypt and sha512crypt password hash generation.
+ *
+ * Official identifiers for suitable password hashes used in salts are
+ * 5 : sha256crypt and
+ * 6 : sha512crypt
+ *
+ * The hashing code below supports and uses salt length up to 16 bytes. Longer
+ * input is possible, but any additional byte of the input is disregarded.
+ * gen_salt(), when called with a sha256crypt or sha512crypt identifier will
+ * always generate a 16 byte long salt string.
+ *
+ * Output is compatible with any sha256crypt and sha512crypt output
+ * generated by e.g. OpenSSL or libc crypt().
+ *
+ * The described algorithm uses default computing rounds of 5000. Currently,
+ * even when no specific rounds specification is used, we always explicitly
+ * print out the rounds option flag with the final hash password string.
+ *
+ * The length of the specific password hash (without magic bytes and salt
+ * string) is:
+ *
+ * sha256crypt: 43 bytes and
+ * sha512crypt: 86 bytes.
+ *
+ * Overall hashed password length is:
+ *
+ * sha256crypt: 80 bytes and
+ * sha512crypt: 123 bytes
+ *
+ */
+#include "postgres.h"
+
+#include "common/string.h"
+#include "miscadmin.h"
+
+#include "px-crypt.h"
+#include "px.h"
+
+typedef enum
+{
+ PGCRYPTO_SHA256CRYPT = 0,
+ PGCRYPTO_SHA512CRYPT = 1,
+ PGCRYPTO_SHA_UNKOWN
+} PGCRYPTO_SHA_t;
+
+static unsigned char _crypt_itoa64[64 + 1] =
+"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+
+/*
+ * Modern UNIX password, based on SHA crypt hashes
+ */
+char *
+px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
+{
+ static const char rounds_prefix[] = "rounds=";
+ static char *magic_bytes[2] = {"$5$", "$6$"};
+
+ /* Used to create the password hash string */
+ StringInfo out_buf = NULL;
+
+ PGCRYPTO_SHA_t type = PGCRYPTO_SHA_UNKOWN;
+ PX_MD *digestA = NULL;
+ PX_MD *digestB = NULL;
+ int err;
+
+ const char *dec_salt_binary; /* pointer into the real salt string */
+ StringInfo decoded_salt = NULL; /* decoded salt string */
+ unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN];
+
+ /* temporary buffer for digests */
+ unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN];
+ char rounds_custom = 0;
+ char *p_bytes = NULL;
+ char *s_bytes = NULL;
+ char *cp = NULL;
+ const char *fp = NULL; /* intermediate pointer within salt string */
+ const char *ep = NULL; /* holds pointer to the end of the salt string */
+ size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */
+ unsigned int block; /* number of bytes processed */
+ uint32 rounds = PX_SHACRYPT_ROUNDS_DEFAULT;
+ unsigned int len,
+ salt_len = 0;
+
+ /* Init result buffer */
+ out_buf = makeStringInfoExt(PX_SHACRYPT_BUF_LEN);
+ decoded_salt = makeStringInfoExt(PX_SHACRYPT_SALT_MAX_LEN);
+
+ /* Sanity checks */
+ if (!passwd)
+ return NULL;
+
+ if (pw == NULL)
+ elog(ERROR, "null value for password rejected");
+
+ if (salt == NULL)
+ elog(ERROR, "null value for salt rejected");
+
+ /*
+ * Make sure result buffers are large enough.
+ */
+ if (dstlen < PX_SHACRYPT_BUF_LEN)
+ elog(ERROR, "insufficient result buffer size to encrypt password");
+
+ /* Init contents of buffers properly */
+ memset(&sha_buf, '\0', sizeof(sha_buf));
+ memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp));
+
+ /*
+ * Decode the salt string. We need to know how many rounds and which
+ * digest we have to use to hash the password.
+ */
+ len = strlen(pw);
+ dec_salt_binary = salt;
+
+ /*
+ * Analyze and prepare the salt string
+ *
+ * The magic string should be specified in the first three bytes of the
+ * salt string. Do some sanity checks first.
+ */
+ if (strlen(dec_salt_binary) < 3)
+ ereport(ERROR,
+ errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+ errmsg("invalid salt"));
+
+ /*
+ * Check format of magic bytes. These should define either 5=sha256crypt
+ * or 6=sha512crypt in the second byte, enclosed by ascii dollar signs.
+ */
+ if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$'))
+ ereport(ERROR,
+ errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+ errmsg("invalid format of salt"),
+ errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\""));
+
+ /*
+ * Check magic byte for supported shacrypt digest.
+ *
+ * We're just interested in the very first 3 bytes of the salt string,
+ * since this defines the digest length to use.
+ */
+ if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0)
+ {
+ type = PGCRYPTO_SHA256CRYPT;
+ dec_salt_binary += strlen(magic_bytes[0]);
+ }
+ else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0)
+ {
+ type = PGCRYPTO_SHA512CRYPT;
+ dec_salt_binary += strlen(magic_bytes[1]);
+ }
+
+ /*
+ * dec_salt_binary pointer is positioned after the magic bytes now
+ *
+ * We extract any options in the following code branch. The only optional
+ * setting we need to take care of is the "rounds" option. Note that the
+ * salt generator already checked for invalid settings before, but we need
+ * to do it here again to protect against injection of wrong values when
+ * called without the generator.
+ *
+ * If there is any garbage added after the magic byte and the options/salt
+ * string, we don't treat this special: This is just absorbed as part of
+ * the salt with up to PX_SHACRYPT_SALT_LEN_MAX.
+ *
+ * Unknown magic byte is handled further below.
+ */
+ if (strncmp(dec_salt_binary,
+ rounds_prefix, sizeof(rounds_prefix) - 1) == 0)
+ {
+ const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1;
+ char *endp;
+ int srounds = strtoint(num, &endp, 10);
+
+ if (*endp != '$')
+ ereport(ERROR,
+ errcode(ERRCODE_SYNTAX_ERROR),
+ errmsg("could not parse salt options"));
+
+ dec_salt_binary = endp + 1;
+
+ /*
+ * We violate supported lower or upper bound of rounds, but in this
+ * case we change this value to the supported lower or upper value. We
+ * don't do this silently and print a NOTICE in such a case.
+ *
+ * Note that a salt string generated with gen_salt() would never
+ * generated such a salt string, since it would error out.
+ *
+ * But Drepper's upstream reference implementation supports this when
+ * passing the salt string directly, so we maintain compatibility.
+ */
+ if (srounds > PX_SHACRYPT_ROUNDS_MAX)
+ {
+ ereport(NOTICE,
+ errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead",
+ srounds, PX_SHACRYPT_ROUNDS_MAX,
+ PX_SHACRYPT_ROUNDS_MAX));
+ srounds = PX_SHACRYPT_ROUNDS_MAX;
+ }
+ else if (srounds < PX_SHACRYPT_ROUNDS_MIN)
+ {
+ ereport(NOTICE,
+ errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("rounds=%d is below supported value (%d), using %d instead",
+ srounds, PX_SHACRYPT_ROUNDS_MIN,
+ PX_SHACRYPT_ROUNDS_MIN));
+ srounds = PX_SHACRYPT_ROUNDS_MIN;
+ }
+
+ rounds = (uint32) srounds;
+ rounds_custom = 1;
+ }
+
+ /*
+ * Choose the correct digest length and add the magic bytes to the result
+ * buffer. Also handle possible invalid magic byte we've extracted above.
+ */
+ switch (type)
+ {
+ case PGCRYPTO_SHA256CRYPT:
+ {
+ /* Two PX_MD objects required */
+ err = px_find_digest("sha256", &digestA);
+ if (err)
+ goto error;
+
+ err = px_find_digest("sha256", &digestB);
+ if (err)
+ goto error;
+
+ /* digest buffer length is 32 for sha256 */
+ buf_size = 32;
+
+ appendStringInfoString(out_buf, magic_bytes[0]);
+ break;
+ }
+
+ case PGCRYPTO_SHA512CRYPT:
+ {
+ /* Two PX_MD objects required */
+ err = px_find_digest("sha512", &digestA);
+ if (err)
+ goto error;
+
+ err = px_find_digest("sha512", &digestB);
+ if (err)
+ goto error;
+
+ buf_size = PX_SHACRYPT_DIGEST_MAX_LEN;
+
+ appendStringInfoString(out_buf, magic_bytes[1]);
+ break;
+ }
+
+ case PGCRYPTO_SHA_UNKOWN:
+ elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]);
+ }
+
+ if (rounds_custom > 0)
+ appendStringInfo(out_buf, "rounds=%u$", rounds);
+
+ /*
+ * We need the real decoded salt string from salt input, this is every
+ * character before the last '$' in the preamble. Append every compatible
+ * character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note
+ * that depending on the input, there might be no '$' marker after the
+ * salt, when there is no password hash attached at the end.
+ *
+ * We try hard to recognize mistakes, but since we might get an input
+ * string which might also have the password hash after the salt string
+ * section we give up as soon we reach the end of the input or if there
+ * are any bytes consumed for the salt string until we reach the first '$'
+ * marker thereafter.
+ */
+ for (ep = dec_salt_binary;
+ *ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN);
+ ep++)
+ {
+ /*
+ * Filter out any string which shouldn't be here.
+ *
+ * First check for accidentally embedded magic strings here. We don't
+ * support '$' in salt strings anyways and seeing a magic byte trying
+ * to identify shacrypt hashes might indicate that something went
+ * wrong when generating this salt string. Note that we later check
+ * for non-supported literals anyways, but any '$' here confuses us at
+ * this point.
+ */
+ fp = strstr(dec_salt_binary, magic_bytes[0]);
+ if (fp != NULL)
+ elog(ERROR, "bogus magic byte found in salt string");
+
+ fp = strstr(dec_salt_binary, magic_bytes[1]);
+ if (fp != NULL)
+ elog(ERROR, "bogus magic byte found in salt string");
+
+ /*
+ * This looks very strict, but we assume the caller did something
+ * wrong when we see a "rounds=" option here.
+ */
+ fp = strstr(dec_salt_binary, rounds_prefix);
+ if (fp != NULL)
+ elog(ERROR, "invalid rounds option specified in salt string");
+
+ if (*ep != '$')
+ {
+ if (isalpha(*ep) || isdigit(*ep) || (*ep == '.') || (*ep == '/'))
+ appendStringInfoCharMacro(decoded_salt, *ep);
+ else
+ elog(ERROR, "invalid character in salt string: \"%c\"", *ep);
+ }
+ else
+ {
+ /*
+ * We encountered a '$' marker. Check if we already absorbed some
+ * bytes from input. If true, we are optimistic and terminate at
+ * this stage. If not, we try further.
+ *
+ * If we already consumed enough bytes for the salt string,
+ * everything that is after this marker is considered to be part
+ * of an optionally specified password hash and ignored.
+ */
+ if (decoded_salt->len > 0)
+ break;
+ }
+ }
+
+ salt_len = decoded_salt->len;
+ appendStringInfoString(out_buf, decoded_salt->data);
+ elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u",
+ decoded_salt->data, decoded_salt->len, rounds);
+
+ /*
+ * Sanity check: at this point the salt string buffer must not exceed
+ * expected size.
+ */
+ if (out_buf->len > (3 + 17 * rounds_custom + salt_len))
+ elog(ERROR, "unexpected length of salt string");
+
+ /*-
+ * 1. Start digest A
+ * 2. Add the password string to digest A
+ * 3. Add the salt to digest A
+ */
+ px_md_update(digestA, (const unsigned char *) pw, len);
+ px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len);
+
+ /*-
+ * 4. Create digest B
+ * 5. Add password to digest B
+ * 6. Add the salt string to digest B
+ * 7. Add the password again to digest B
+ * 8. Finalize digest B
+ */
+ px_md_update(digestB, (const unsigned char *) pw, len);
+ px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
+ px_md_update(digestB, (const unsigned char *) pw, len);
+ px_md_finish(digestB, sha_buf);
+
+ /*
+ * 9. For each block (excluding the NULL byte), add digest B to digest A.
+ */
+ for (block = len; block > buf_size; block -= buf_size)
+ px_md_update(digestA, sha_buf, buf_size);
+
+ /*-
+ * 10. For the remaining N bytes of the password string, add the first N
+ * bytes of digest B to A.
+ */
+ px_md_update(digestA, sha_buf, block);
+
+ /*-
+ * 11. For each bit of the binary representation of the length of the
+ * password string up to and including the highest 1-digit, starting from
+ * to lowest bit position (numeric value 1)
+ *
+ * a) for a 1-digit add digest B (sha_buf) to digest A
+ * b) for a 0-digit add the password string
+ */
+ block = len;
+ while (block)
+ {
+ px_md_update(digestA,
+ (block & 1) ? sha_buf : (const unsigned char *) pw,
+ (block & 1) ? buf_size : len);
+
+ /* right shift to next byte */
+ block >>= 1;
+ }
+
+ /* 12. Finalize digest A */
+ px_md_finish(digestA, sha_buf);
+
+ /* 13. Start digest DP */
+ px_md_reset(digestB);
+
+ /*-
+ * 14 Add every byte of the password string (excluding trailing NULL)
+ * to the digest DP
+ */
+ for (block = len; block > 0; block--)
+ px_md_update(digestB, (const unsigned char *) pw, len);
+
+ /* 15. Finalize digest DP */
+ px_md_finish(digestB, sha_buf_tmp);
+
+ /*-
+ * 16. produce byte sequence P with same length as password.
+ * a) for each block of 32 or 64 bytes of length of the password
+ * string the entire digest DP is used
+ * b) for the remaining N (up to 31 or 63) bytes use the
+ * first N bytes of digest DP
+ */
+ if ((p_bytes = palloc0(len)) == NULL)
+ {
+ goto error;
+ }
+
+ /* N step of 16, copy over the bytes from password */
+ for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size)
+ memcpy(cp, sha_buf_tmp, buf_size);
+ memcpy(cp, sha_buf_tmp, block);
+
+ /*
+ * 17. Start digest DS
+ */
+ px_md_reset(digestB);
+
+ /*-
+ * 18. Repeat the following 16+A[0] times, where A[0] represents the first
+ * byte in digest A interpreted as an 8-bit unsigned value
+ * add the salt to digest DS
+ */
+ for (block = 16 + sha_buf[0]; block > 0; block--)
+ px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
+
+ /*
+ * 19. Finalize digest DS
+ */
+ px_md_finish(digestB, sha_buf_tmp);
+
+ /*-
+ * 20. Produce byte sequence S of the same length as the salt string where
+ *
+ * a) for each block of 32 or 64 bytes of length of the salt string the
+ * entire digest DS is used
+ *
+ * b) for the remaining N (up to 31 or 63) bytes use the first N
+ * bytes of digest DS
+ */
+ if ((s_bytes = palloc0(salt_len)) == NULL)
+ goto error;
+
+ for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size)
+ memcpy(cp, sha_buf_tmp, buf_size);
+ memcpy(cp, sha_buf_tmp, block);
+
+ /* Make sure we don't leave something important behind */
+ px_memset(&sha_buf_tmp, 0, sizeof sha_buf);
+
+ /*-
+ * 21. Repeat a loop according to the number specified in the rounds=<N>
+ * specification in the salt (or the default value if none is
+ * present). Each round is numbered, starting with 0 and up to N-1.
+ *
+ * The loop uses a digest as input. In the first round it is the
+ * digest produced in step 12. In the latter steps it is the digest
+ * produced in step 21.h of the previous round. The following text
+ * uses the notation "digest A/B" to describe this behavior.
+ */
+ for (block = 0; block < rounds; block++)
+ {
+ /*
+ * Make it possible to abort in case large values for "rounds" are
+ * specified.
+ */
+ CHECK_FOR_INTERRUPTS();
+
+ /* a) start digest B */
+ px_md_reset(digestB);
+
+ /*-
+ * b) for odd round numbers add the byte sequence P to digest B
+ * c) for even round numbers add digest A/B
+ */
+ px_md_update(digestB,
+ (block & 1) ? (const unsigned char *) p_bytes : sha_buf,
+ (block & 1) ? len : buf_size);
+
+ /* d) for all round numbers not divisible by 3 add the byte sequence S */
+ if ((block % 3) != 0)
+ px_md_update(digestB, (const unsigned char *) s_bytes, salt_len);
+
+ /* e) for all round numbers not divisible by 7 add the byte sequence P */
+ if ((block % 7) != 0)
+ px_md_update(digestB, (const unsigned char *) p_bytes, len);
+
+ /*-
+ * f) for odd round numbers add digest A/C
+ * g) for even round numbers add the byte sequence P
+ */
+ px_md_update(digestB,
+ (block & 1) ? sha_buf : (const unsigned char *) p_bytes,
+ (block & 1) ? buf_size : len);
+
+ /* h) finish digest C. */
+ px_md_finish(digestB, sha_buf);
+ }
+
+ px_md_free(digestA);
+ px_md_free(digestB);
+
+ digestA = NULL;
+ digestB = NULL;
+
+ pfree(s_bytes);
+ pfree(p_bytes);
+
+ s_bytes = NULL;
+ p_bytes = NULL;
+
+ /* prepare final result buffer */
+ appendStringInfoCharMacro(out_buf, '$');
+
+#define b64_from_24bit(B2, B1, B0, N) \
+ do { \
+ unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
+ int i = (N); \
+ while (i-- > 0) \
+ { \
+ appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \
+ w >>= 6; \
+ } \
+ } while (0)
+
+ switch (type)
+ {
+ case PGCRYPTO_SHA256CRYPT:
+ {
+ b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4);
+ b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4);
+ b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4);
+ b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4);
+ b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4);
+ b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4);
+ b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4);
+ b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4);
+ b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4);
+ b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4);
+ b64_from_24bit(0, sha_buf[31], sha_buf[30], 3);
+
+ break;
+ }
+
+ case PGCRYPTO_SHA512CRYPT:
+ {
+ b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4);
+ b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4);
+ b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4);
+ b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4);
+ b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4);
+ b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4);
+ b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4);
+ b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4);
+ b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4);
+ b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4);
+ b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4);
+ b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4);
+ b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4);
+ b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4);
+ b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4);
+ b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4);
+ b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4);
+ b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4);
+ b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4);
+ b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4);
+ b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4);
+ b64_from_24bit(0, 0, sha_buf[63], 2);
+
+ break;
+ }
+
+ case PGCRYPTO_SHA_UNKOWN:
+ /* we shouldn't land here ... */
+ elog(ERROR, "unsupported digest length");
+ }
+
+ *cp = '\0';
+
+ /*
+ * Copy over result to specified buffer.
+ *
+ * The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN
+ * allocated, since we checked above if dstlen is smaller than
+ * PX_SHACRYPT_BUF_LEN (which also includes the NULL byte).
+ *
+ * In that case we would have failed above already.
+ */
+ memcpy(passwd, out_buf->data, out_buf->len);
+
+ /* make sure nothing important is left behind */
+ px_memset(&sha_buf, 0, sizeof sha_buf);
+ destroyStringInfo(out_buf);
+ destroyStringInfo(decoded_salt);
+
+ /* ...and we're done */
+ return passwd;
+
+error:
+ if (digestA != NULL)
+ px_md_free(digestA);
+
+ if (digestB != NULL)
+ px_md_free(digestB);
+
+ if (out_buf != NULL)
+ destroyStringInfo(out_buf);
+
+ ereport(ERROR,
+ errcode(ERRCODE_INTERNAL_ERROR),
+ errmsg("cannot create encrypted password"));
+ return NULL; /* keep compiler quiet */
+}