diff options
Diffstat (limited to 'contrib/pgcrypto/crypt-sha.c')
-rw-r--r-- | contrib/pgcrypto/crypt-sha.c | 640 |
1 files changed, 640 insertions, 0 deletions
diff --git a/contrib/pgcrypto/crypt-sha.c b/contrib/pgcrypto/crypt-sha.c new file mode 100644 index 00000000000..862f3fb9a68 --- /dev/null +++ b/contrib/pgcrypto/crypt-sha.c @@ -0,0 +1,640 @@ +/* + * contrib/pgcrypto/crypt-sha.c + * + * This implements shacrypt password hash functions and follows the + * public available reference implementation from + * + * https://www.akkadia.org/drepper/SHA-crypt.txt + * + * This code is public domain. + * + * Please see the inline comments for details about the algorithm. + * + * Basically the following code implements password hashing with sha256 and + * sha512 digest via OpenSSL. Additionally, an extended salt generation (see + * crypt-gensalt.c for details) is provided, which generates a salt suitable + * for either sha256crypt and sha512crypt password hash generation. + * + * Official identifiers for suitable password hashes used in salts are + * 5 : sha256crypt and + * 6 : sha512crypt + * + * The hashing code below supports and uses salt length up to 16 bytes. Longer + * input is possible, but any additional byte of the input is disregarded. + * gen_salt(), when called with a sha256crypt or sha512crypt identifier will + * always generate a 16 byte long salt string. + * + * Output is compatible with any sha256crypt and sha512crypt output + * generated by e.g. OpenSSL or libc crypt(). + * + * The described algorithm uses default computing rounds of 5000. Currently, + * even when no specific rounds specification is used, we always explicitly + * print out the rounds option flag with the final hash password string. + * + * The length of the specific password hash (without magic bytes and salt + * string) is: + * + * sha256crypt: 43 bytes and + * sha512crypt: 86 bytes. + * + * Overall hashed password length is: + * + * sha256crypt: 80 bytes and + * sha512crypt: 123 bytes + * + */ +#include "postgres.h" + +#include "common/string.h" +#include "miscadmin.h" + +#include "px-crypt.h" +#include "px.h" + +typedef enum +{ + PGCRYPTO_SHA256CRYPT = 0, + PGCRYPTO_SHA512CRYPT = 1, + PGCRYPTO_SHA_UNKOWN +} PGCRYPTO_SHA_t; + +static unsigned char _crypt_itoa64[64 + 1] = +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + +/* + * Modern UNIX password, based on SHA crypt hashes + */ +char * +px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen) +{ + static const char rounds_prefix[] = "rounds="; + static char *magic_bytes[2] = {"$5$", "$6$"}; + + /* Used to create the password hash string */ + StringInfo out_buf = NULL; + + PGCRYPTO_SHA_t type = PGCRYPTO_SHA_UNKOWN; + PX_MD *digestA = NULL; + PX_MD *digestB = NULL; + int err; + + const char *dec_salt_binary; /* pointer into the real salt string */ + StringInfo decoded_salt = NULL; /* decoded salt string */ + unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN]; + + /* temporary buffer for digests */ + unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN]; + char rounds_custom = 0; + char *p_bytes = NULL; + char *s_bytes = NULL; + char *cp = NULL; + const char *fp = NULL; /* intermediate pointer within salt string */ + const char *ep = NULL; /* holds pointer to the end of the salt string */ + size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */ + unsigned int block; /* number of bytes processed */ + uint32 rounds = PX_SHACRYPT_ROUNDS_DEFAULT; + unsigned int len, + salt_len = 0; + + /* Init result buffer */ + out_buf = makeStringInfoExt(PX_SHACRYPT_BUF_LEN); + decoded_salt = makeStringInfoExt(PX_SHACRYPT_SALT_MAX_LEN); + + /* Sanity checks */ + if (!passwd) + return NULL; + + if (pw == NULL) + elog(ERROR, "null value for password rejected"); + + if (salt == NULL) + elog(ERROR, "null value for salt rejected"); + + /* + * Make sure result buffers are large enough. + */ + if (dstlen < PX_SHACRYPT_BUF_LEN) + elog(ERROR, "insufficient result buffer size to encrypt password"); + + /* Init contents of buffers properly */ + memset(&sha_buf, '\0', sizeof(sha_buf)); + memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp)); + + /* + * Decode the salt string. We need to know how many rounds and which + * digest we have to use to hash the password. + */ + len = strlen(pw); + dec_salt_binary = salt; + + /* + * Analyze and prepare the salt string + * + * The magic string should be specified in the first three bytes of the + * salt string. Do some sanity checks first. + */ + if (strlen(dec_salt_binary) < 3) + ereport(ERROR, + errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("invalid salt")); + + /* + * Check format of magic bytes. These should define either 5=sha256crypt + * or 6=sha512crypt in the second byte, enclosed by ascii dollar signs. + */ + if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$')) + ereport(ERROR, + errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("invalid format of salt"), + errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\"")); + + /* + * Check magic byte for supported shacrypt digest. + * + * We're just interested in the very first 3 bytes of the salt string, + * since this defines the digest length to use. + */ + if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0) + { + type = PGCRYPTO_SHA256CRYPT; + dec_salt_binary += strlen(magic_bytes[0]); + } + else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0) + { + type = PGCRYPTO_SHA512CRYPT; + dec_salt_binary += strlen(magic_bytes[1]); + } + + /* + * dec_salt_binary pointer is positioned after the magic bytes now + * + * We extract any options in the following code branch. The only optional + * setting we need to take care of is the "rounds" option. Note that the + * salt generator already checked for invalid settings before, but we need + * to do it here again to protect against injection of wrong values when + * called without the generator. + * + * If there is any garbage added after the magic byte and the options/salt + * string, we don't treat this special: This is just absorbed as part of + * the salt with up to PX_SHACRYPT_SALT_LEN_MAX. + * + * Unknown magic byte is handled further below. + */ + if (strncmp(dec_salt_binary, + rounds_prefix, sizeof(rounds_prefix) - 1) == 0) + { + const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1; + char *endp; + int srounds = strtoint(num, &endp, 10); + + if (*endp != '$') + ereport(ERROR, + errcode(ERRCODE_SYNTAX_ERROR), + errmsg("could not parse salt options")); + + dec_salt_binary = endp + 1; + + /* + * We violate supported lower or upper bound of rounds, but in this + * case we change this value to the supported lower or upper value. We + * don't do this silently and print a NOTICE in such a case. + * + * Note that a salt string generated with gen_salt() would never + * generated such a salt string, since it would error out. + * + * But Drepper's upstream reference implementation supports this when + * passing the salt string directly, so we maintain compatibility. + */ + if (srounds > PX_SHACRYPT_ROUNDS_MAX) + { + ereport(NOTICE, + errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), + errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead", + srounds, PX_SHACRYPT_ROUNDS_MAX, + PX_SHACRYPT_ROUNDS_MAX)); + srounds = PX_SHACRYPT_ROUNDS_MAX; + } + else if (srounds < PX_SHACRYPT_ROUNDS_MIN) + { + ereport(NOTICE, + errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), + errmsg("rounds=%d is below supported value (%d), using %d instead", + srounds, PX_SHACRYPT_ROUNDS_MIN, + PX_SHACRYPT_ROUNDS_MIN)); + srounds = PX_SHACRYPT_ROUNDS_MIN; + } + + rounds = (uint32) srounds; + rounds_custom = 1; + } + + /* + * Choose the correct digest length and add the magic bytes to the result + * buffer. Also handle possible invalid magic byte we've extracted above. + */ + switch (type) + { + case PGCRYPTO_SHA256CRYPT: + { + /* Two PX_MD objects required */ + err = px_find_digest("sha256", &digestA); + if (err) + goto error; + + err = px_find_digest("sha256", &digestB); + if (err) + goto error; + + /* digest buffer length is 32 for sha256 */ + buf_size = 32; + + appendStringInfoString(out_buf, magic_bytes[0]); + break; + } + + case PGCRYPTO_SHA512CRYPT: + { + /* Two PX_MD objects required */ + err = px_find_digest("sha512", &digestA); + if (err) + goto error; + + err = px_find_digest("sha512", &digestB); + if (err) + goto error; + + buf_size = PX_SHACRYPT_DIGEST_MAX_LEN; + + appendStringInfoString(out_buf, magic_bytes[1]); + break; + } + + case PGCRYPTO_SHA_UNKOWN: + elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]); + } + + if (rounds_custom > 0) + appendStringInfo(out_buf, "rounds=%u$", rounds); + + /* + * We need the real decoded salt string from salt input, this is every + * character before the last '$' in the preamble. Append every compatible + * character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note + * that depending on the input, there might be no '$' marker after the + * salt, when there is no password hash attached at the end. + * + * We try hard to recognize mistakes, but since we might get an input + * string which might also have the password hash after the salt string + * section we give up as soon we reach the end of the input or if there + * are any bytes consumed for the salt string until we reach the first '$' + * marker thereafter. + */ + for (ep = dec_salt_binary; + *ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN); + ep++) + { + /* + * Filter out any string which shouldn't be here. + * + * First check for accidentally embedded magic strings here. We don't + * support '$' in salt strings anyways and seeing a magic byte trying + * to identify shacrypt hashes might indicate that something went + * wrong when generating this salt string. Note that we later check + * for non-supported literals anyways, but any '$' here confuses us at + * this point. + */ + fp = strstr(dec_salt_binary, magic_bytes[0]); + if (fp != NULL) + elog(ERROR, "bogus magic byte found in salt string"); + + fp = strstr(dec_salt_binary, magic_bytes[1]); + if (fp != NULL) + elog(ERROR, "bogus magic byte found in salt string"); + + /* + * This looks very strict, but we assume the caller did something + * wrong when we see a "rounds=" option here. + */ + fp = strstr(dec_salt_binary, rounds_prefix); + if (fp != NULL) + elog(ERROR, "invalid rounds option specified in salt string"); + + if (*ep != '$') + { + if (isalpha(*ep) || isdigit(*ep) || (*ep == '.') || (*ep == '/')) + appendStringInfoCharMacro(decoded_salt, *ep); + else + elog(ERROR, "invalid character in salt string: \"%c\"", *ep); + } + else + { + /* + * We encountered a '$' marker. Check if we already absorbed some + * bytes from input. If true, we are optimistic and terminate at + * this stage. If not, we try further. + * + * If we already consumed enough bytes for the salt string, + * everything that is after this marker is considered to be part + * of an optionally specified password hash and ignored. + */ + if (decoded_salt->len > 0) + break; + } + } + + salt_len = decoded_salt->len; + appendStringInfoString(out_buf, decoded_salt->data); + elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u", + decoded_salt->data, decoded_salt->len, rounds); + + /* + * Sanity check: at this point the salt string buffer must not exceed + * expected size. + */ + if (out_buf->len > (3 + 17 * rounds_custom + salt_len)) + elog(ERROR, "unexpected length of salt string"); + + /*- + * 1. Start digest A + * 2. Add the password string to digest A + * 3. Add the salt to digest A + */ + px_md_update(digestA, (const unsigned char *) pw, len); + px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len); + + /*- + * 4. Create digest B + * 5. Add password to digest B + * 6. Add the salt string to digest B + * 7. Add the password again to digest B + * 8. Finalize digest B + */ + px_md_update(digestB, (const unsigned char *) pw, len); + px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len); + px_md_update(digestB, (const unsigned char *) pw, len); + px_md_finish(digestB, sha_buf); + + /* + * 9. For each block (excluding the NULL byte), add digest B to digest A. + */ + for (block = len; block > buf_size; block -= buf_size) + px_md_update(digestA, sha_buf, buf_size); + + /*- + * 10. For the remaining N bytes of the password string, add the first N + * bytes of digest B to A. + */ + px_md_update(digestA, sha_buf, block); + + /*- + * 11. For each bit of the binary representation of the length of the + * password string up to and including the highest 1-digit, starting from + * to lowest bit position (numeric value 1) + * + * a) for a 1-digit add digest B (sha_buf) to digest A + * b) for a 0-digit add the password string + */ + block = len; + while (block) + { + px_md_update(digestA, + (block & 1) ? sha_buf : (const unsigned char *) pw, + (block & 1) ? buf_size : len); + + /* right shift to next byte */ + block >>= 1; + } + + /* 12. Finalize digest A */ + px_md_finish(digestA, sha_buf); + + /* 13. Start digest DP */ + px_md_reset(digestB); + + /*- + * 14 Add every byte of the password string (excluding trailing NULL) + * to the digest DP + */ + for (block = len; block > 0; block--) + px_md_update(digestB, (const unsigned char *) pw, len); + + /* 15. Finalize digest DP */ + px_md_finish(digestB, sha_buf_tmp); + + /*- + * 16. produce byte sequence P with same length as password. + * a) for each block of 32 or 64 bytes of length of the password + * string the entire digest DP is used + * b) for the remaining N (up to 31 or 63) bytes use the + * first N bytes of digest DP + */ + if ((p_bytes = palloc0(len)) == NULL) + { + goto error; + } + + /* N step of 16, copy over the bytes from password */ + for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size) + memcpy(cp, sha_buf_tmp, buf_size); + memcpy(cp, sha_buf_tmp, block); + + /* + * 17. Start digest DS + */ + px_md_reset(digestB); + + /*- + * 18. Repeat the following 16+A[0] times, where A[0] represents the first + * byte in digest A interpreted as an 8-bit unsigned value + * add the salt to digest DS + */ + for (block = 16 + sha_buf[0]; block > 0; block--) + px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len); + + /* + * 19. Finalize digest DS + */ + px_md_finish(digestB, sha_buf_tmp); + + /*- + * 20. Produce byte sequence S of the same length as the salt string where + * + * a) for each block of 32 or 64 bytes of length of the salt string the + * entire digest DS is used + * + * b) for the remaining N (up to 31 or 63) bytes use the first N + * bytes of digest DS + */ + if ((s_bytes = palloc0(salt_len)) == NULL) + goto error; + + for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size) + memcpy(cp, sha_buf_tmp, buf_size); + memcpy(cp, sha_buf_tmp, block); + + /* Make sure we don't leave something important behind */ + px_memset(&sha_buf_tmp, 0, sizeof sha_buf); + + /*- + * 21. Repeat a loop according to the number specified in the rounds=<N> + * specification in the salt (or the default value if none is + * present). Each round is numbered, starting with 0 and up to N-1. + * + * The loop uses a digest as input. In the first round it is the + * digest produced in step 12. In the latter steps it is the digest + * produced in step 21.h of the previous round. The following text + * uses the notation "digest A/B" to describe this behavior. + */ + for (block = 0; block < rounds; block++) + { + /* + * Make it possible to abort in case large values for "rounds" are + * specified. + */ + CHECK_FOR_INTERRUPTS(); + + /* a) start digest B */ + px_md_reset(digestB); + + /*- + * b) for odd round numbers add the byte sequence P to digest B + * c) for even round numbers add digest A/B + */ + px_md_update(digestB, + (block & 1) ? (const unsigned char *) p_bytes : sha_buf, + (block & 1) ? len : buf_size); + + /* d) for all round numbers not divisible by 3 add the byte sequence S */ + if ((block % 3) != 0) + px_md_update(digestB, (const unsigned char *) s_bytes, salt_len); + + /* e) for all round numbers not divisible by 7 add the byte sequence P */ + if ((block % 7) != 0) + px_md_update(digestB, (const unsigned char *) p_bytes, len); + + /*- + * f) for odd round numbers add digest A/C + * g) for even round numbers add the byte sequence P + */ + px_md_update(digestB, + (block & 1) ? sha_buf : (const unsigned char *) p_bytes, + (block & 1) ? buf_size : len); + + /* h) finish digest C. */ + px_md_finish(digestB, sha_buf); + } + + px_md_free(digestA); + px_md_free(digestB); + + digestA = NULL; + digestB = NULL; + + pfree(s_bytes); + pfree(p_bytes); + + s_bytes = NULL; + p_bytes = NULL; + + /* prepare final result buffer */ + appendStringInfoCharMacro(out_buf, '$'); + +#define b64_from_24bit(B2, B1, B0, N) \ + do { \ + unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ + int i = (N); \ + while (i-- > 0) \ + { \ + appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \ + w >>= 6; \ + } \ + } while (0) + + switch (type) + { + case PGCRYPTO_SHA256CRYPT: + { + b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4); + b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4); + b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4); + b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4); + b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4); + b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4); + b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4); + b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4); + b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4); + b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4); + b64_from_24bit(0, sha_buf[31], sha_buf[30], 3); + + break; + } + + case PGCRYPTO_SHA512CRYPT: + { + b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4); + b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4); + b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4); + b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4); + b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4); + b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4); + b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4); + b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4); + b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4); + b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4); + b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4); + b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4); + b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4); + b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4); + b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4); + b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4); + b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4); + b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4); + b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4); + b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4); + b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4); + b64_from_24bit(0, 0, sha_buf[63], 2); + + break; + } + + case PGCRYPTO_SHA_UNKOWN: + /* we shouldn't land here ... */ + elog(ERROR, "unsupported digest length"); + } + + *cp = '\0'; + + /* + * Copy over result to specified buffer. + * + * The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN + * allocated, since we checked above if dstlen is smaller than + * PX_SHACRYPT_BUF_LEN (which also includes the NULL byte). + * + * In that case we would have failed above already. + */ + memcpy(passwd, out_buf->data, out_buf->len); + + /* make sure nothing important is left behind */ + px_memset(&sha_buf, 0, sizeof sha_buf); + destroyStringInfo(out_buf); + destroyStringInfo(decoded_salt); + + /* ...and we're done */ + return passwd; + +error: + if (digestA != NULL) + px_md_free(digestA); + + if (digestB != NULL) + px_md_free(digestB); + + if (out_buf != NULL) + destroyStringInfo(out_buf); + + ereport(ERROR, + errcode(ERRCODE_INTERNAL_ERROR), + errmsg("cannot create encrypted password")); + return NULL; /* keep compiler quiet */ +} |