diff options
Diffstat (limited to 'src/backend/access/hash/hashfunc.c')
-rw-r--r-- | src/backend/access/hash/hashfunc.c | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/src/backend/access/hash/hashfunc.c b/src/backend/access/hash/hashfunc.c index 6d351da5b0a..c61fec6b84f 100644 --- a/src/backend/access/hash/hashfunc.c +++ b/src/backend/access/hash/hashfunc.c @@ -11,7 +11,7 @@ * src/backend/access/hash/hashfunc.c * * NOTES - * These functions are stored in pg_amproc. For each operator class + * These functions are stored in pg_amproc. For each operator class * defined for hash indexes, they compute the hash value of the argument. * * Additional hash functions appear in /utils/adt/ files for various @@ -158,7 +158,7 @@ hashtext(PG_FUNCTION_ARGS) /* * Note: this is currently identical in behavior to hashvarlena, but keep * it as a separate function in case we someday want to do something - * different in non-C locales. (See also hashbpchar, if so.) + * different in non-C locales. (See also hashbpchar, if so.) */ result = hash_any((unsigned char *) VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key)); @@ -236,7 +236,7 @@ hashvarlena(PG_FUNCTION_ARGS) * * This allows some parallelism. Read-after-writes are good at doubling * the number of bits affected, so the goal of mixing pulls in the opposite - * direction from the goal of parallelism. I did what I could. Rotates + * direction from the goal of parallelism. I did what I could. Rotates * seem to cost as much as shifts on every machine I could lay my hands on, * and rotates are much kinder to the top and bottom bits, so I used rotates. *---------- @@ -270,7 +270,7 @@ hashvarlena(PG_FUNCTION_ARGS) * substantial performance increase since final() does not need to * do well in reverse, but is does need to affect all output bits. * mix(), on the other hand, does not need to affect all output - * bits (affecting 32 bits is enough). The original hash function had + * bits (affecting 32 bits is enough). The original hash function had * a single mixing operation that had to satisfy both sets of requirements * and was slower as a result. *---------- @@ -291,7 +291,7 @@ hashvarlena(PG_FUNCTION_ARGS) * k : the key (the unaligned variable-length array of bytes) * len : the length of the key, counting by bytes * - * Returns a uint32 value. Every bit of the key affects every bit of + * Returns a uint32 value. Every bit of the key affects every bit of * the return value. Every 1-bit and 2-bit delta achieves avalanche. * About 6*len+35 instructions. The best hash table sizes are powers * of 2. There is no need to do mod a prime (mod is sooo slow!). |