diff options
Diffstat (limited to 'src/backend/utils/mmgr/aset.c')
-rw-r--r-- | src/backend/utils/mmgr/aset.c | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/src/backend/utils/mmgr/aset.c b/src/backend/utils/mmgr/aset.c index 099200cb66a..743455e4bcc 100644 --- a/src/backend/utils/mmgr/aset.c +++ b/src/backend/utils/mmgr/aset.c @@ -38,7 +38,7 @@ * request, even if it was much larger than necessary. This led to more * and more wasted space in allocated chunks over time. To fix, get rid * of the midrange behavior: we now handle only "small" power-of-2-size - * chunks as chunks. Anything "large" is passed off to malloc(). Change + * chunks as chunks. Anything "large" is passed off to malloc(). Change * the number of freelists to change the small/large boundary. * * @@ -54,7 +54,7 @@ * Thus, if someone makes the common error of writing past what they've * requested, the problem is likely to go unnoticed ... until the day when * there *isn't* any wasted space, perhaps because of different memory - * alignment on a new platform, or some other effect. To catch this sort + * alignment on a new platform, or some other effect. To catch this sort * of problem, the MEMORY_CONTEXT_CHECKING option stores 0x7E just beyond * the requested space whenever the request is less than the actual chunk * size, and verifies that the byte is undamaged when the chunk is freed. @@ -189,7 +189,7 @@ typedef AllocSetContext *AllocSet; /* * AllocBlock * An AllocBlock is the unit of memory that is obtained by aset.c - * from malloc(). It contains one or more AllocChunks, which are + * from malloc(). It contains one or more AllocChunks, which are * the units requested by palloc() and freed by pfree(). AllocChunks * cannot be returned to malloc() individually, instead they are put * on freelists by pfree() and re-used by the next palloc() that has @@ -326,7 +326,7 @@ AllocSetFreeIndex(Size size) /* * At this point we need to obtain log2(tsize)+1, ie, the number of - * not-all-zero bits at the right. We used to do this with a + * not-all-zero bits at the right. We used to do this with a * shift-and-count loop, but this function is enough of a hotspot to * justify micro-optimization effort. The best approach seems to be * to use a lookup table. Note that this code assumes that @@ -544,7 +544,7 @@ AllocSetInit(MemoryContext context) * Actually, this routine has some discretion about what to do. * It should mark all allocated chunks freed, but it need not necessarily * give back all the resources the set owns. Our actual implementation is - * that we hang onto any "keeper" block specified for the set. In this way, + * that we hang onto any "keeper" block specified for the set. In this way, * we don't thrash malloc() when a context is repeatedly reset after small * allocations, which is typical behavior for per-tuple contexts. */ @@ -794,7 +794,7 @@ AllocSetAlloc(MemoryContext context, Size size) /* * In most cases, we'll get back the index of the next larger - * freelist than the one we need to put this chunk on. The + * freelist than the one we need to put this chunk on. The * exception is when availchunk is exactly a power of 2. */ if (availchunk != ((Size) 1 << (a_fidx + ALLOC_MINBITS))) @@ -953,7 +953,7 @@ AllocSetFree(MemoryContext context, void *pointer) { /* * Big chunks are certain to have been allocated as single-chunk - * blocks. Find the containing block and return it to malloc(). + * blocks. Find the containing block and return it to malloc(). */ AllocBlock block = set->blocks; AllocBlock prevblock = NULL; @@ -1080,7 +1080,7 @@ AllocSetRealloc(MemoryContext context, void *pointer, Size size) if (oldsize > set->allocChunkLimit) { /* - * The chunk must have been allocated as a single-chunk block. Find + * The chunk must have been allocated as a single-chunk block. Find * the containing block and use realloc() to make it bigger with * minimum space wastage. */ |