Age | Commit message (Collapse) | Author |
|
This allows them to be added without scanning the table, and validating
them afterwards without holding access exclusive lock on the table after
any violating rows have been deleted or fixed.
Doing ALTER TABLE ... SET NOT NULL for a column that has an invalid
not-null constraint validates that constraint. ALTER TABLE .. VALIDATE
CONSTRAINT is also supported. There are various checks on whether an
invalid constraint is allowed in a child table when the parent table has
a valid constraint; this should match what we do for enforced/not
enforced constraints.
pg_attribute.attnotnull is now only an indicator for whether a not-null
constraint exists for the column; whether it's valid or invalid must be
queried in pg_constraint. Applications can continue to query
pg_attribute.attnotnull as before, but now it's possible that NULL rows
are present in the column even when that's set to true.
For backend internal purposes, we cache the nullability status in
CompactAttribute->attnullability that each tuple descriptor carries
(replacing CompactAttribute.attnotnull, which was a mirror of
Form_pg_attribute.attnotnull). During the initial tuple descriptor
creation, based on the pg_attribute scan, we set this to UNRESTRICTED if
pg_attribute.attnotnull is false, or to UNKNOWN if it's true; then we
update the latter to VALID or INVALID depending on the pg_constraint
scan. This flag is also copied when tupledescs are copied.
Comparing tuple descs for equality must also compare the
CompactAttribute.attnullability flag and return false in case of a
mismatch.
pg_dump deals with these constraints by storing the OIDs of invalid
not-null constraints in a separate array, and running a query to obtain
their properties. The regular table creation SQL omits them entirely.
They are then dealt with in the same way as "separate" CHECK
constraints, and dumped after the data has been loaded. Because no
additional pg_dump infrastructure was required, we don't bump its
version number.
I decided not to bump catversion either, because the old catalog state
works perfectly in the new world. (Trying to run with new catalog state
and the old server version would likely run into issues, however.)
System catalogs do not support invalid not-null constraints (because
commit 14e87ffa5c54 didn't allow them to have pg_constraint rows
anyway.)
Author: Rushabh Lathia <[email protected]>
Author: Jian He <[email protected]>
Reviewed-by: Álvaro Herrera <[email protected]>
Tested-by: Ashutosh Bapat <[email protected]>
Discussion: https://postgr.es/m/CAGPqQf0KitkNack4F5CFkFi-9Dqvp29Ro=EpcWt=4_hs-Rt+bQ@mail.gmail.com
|
|
There were several places in ordering-related planning where a
requirement for btree was hardcoded but an amcanorder index could
suffice. This fixes that. We just need to do the necessary mapping
between strategy numbers and compare types and adjust some related
APIs so that this works independent of btree strategy numbers. For
instance, non-btree amcanorder indexes can now be used to support
sorting and merge joins. Also, predtest.c works independent of btree
strategy numbers now.
To avoid performance regressions, some details on btree and other
built-in index types are still hardcoded as shortcuts, but other index
types now have access to the same features by providing the required
flags and callbacks.
Author: Mark Dilger <[email protected]>
Co-authored-by: Peter Eisentraut <[email protected]>
Discussion: https://www.postgresql.org/message-id/flat/[email protected]
|
|
The check for non-inheritable constraints is performed later, and the
same comment is included at that point.
While we're here, remove one extraneous blank line.
Author: jian he <[email protected]>
Reviewed-by: Kirill Reshke <[email protected]>
Reviewed-by: Richard Guo <[email protected]>
Discussion: https://postgr.es/m/CACJufxETi6x86S8EkH8mRfOcm2AenoE9t1pyCFVMpU34gVhF3w@mail.gmail.com
|
|
This expands the NOT ENFORCED constraint flag, previously only
supported for CHECK constraints (commit ca87c415e2f), to foreign key
constraints.
Normally, when a foreign key constraint is created on a table, action
and check triggers are added to maintain data integrity. With this
patch, if a constraint is marked as NOT ENFORCED, integrity checks are
no longer required, making these triggers unnecessary. Consequently,
when creating a NOT ENFORCED foreign key constraint, triggers will not
be created, and the constraint will be marked as NOT VALID.
Similarly, if an existing foreign key constraint is changed to NOT
ENFORCED, the associated triggers will be dropped, and the constraint
will also be marked as NOT VALID. Conversely, if a NOT ENFORCED
foreign key constraint is changed to ENFORCED, the necessary triggers
will be created, and the will be changed to VALID by performing
necessary validation.
Since not-enforced foreign key constraints have no triggers, the
shortcut used for example in psql and pg_dump to skip looking for
foreign keys if the relation is known not to have triggers no longer
applies. (It already didn't work for partitioned tables.)
Author: Amul Sul <[email protected]>
Reviewed-by: Joel Jacobson <[email protected]>
Reviewed-by: Andrew Dunstan <[email protected]>
Reviewed-by: Peter Eisentraut <[email protected]>
Reviewed-by: jian he <[email protected]>
Reviewed-by: Alvaro Herrera <[email protected]>
Reviewed-by: Ashutosh Bapat <[email protected]>
Reviewed-by: Isaac Morland <[email protected]>
Reviewed-by: Alexandra Wang <[email protected]>
Tested-by: Triveni N <[email protected]>
Discussion: https://www.postgresql.org/message-id/flat/CAAJ_b962c5AcYW9KUt_R_ER5qs3fUGbe4az-SP-vuwPS-w-AGA@mail.gmail.com
|
|
After pushing the bitmap iterator into table-AM specific code (as part
of making bitmap heap scan use the read stream API in 2b73a8cd33b7),
scan_bitmap_next_block() no longer returns the current block number.
Since scan_bitmap_next_block() isn't returning any relevant information
to bitmap table scan code, it makes more sense to get rid of it.
Now, bitmap table scan code only calls table_scan_bitmap_next_tuple(),
and the heap AM implementation of scan_bitmap_next_block() is a local
helper in heapam_handler.c.
Reviewed-by: Tomas Vondra <[email protected]>
Discussion: https://postgr.es/m/flat/CAAKRu_ZwCwWFeL_H3ia26bP2e7HiKLWt0ZmGXPVwPO6uXq0vaA%40mail.gmail.com
|
|
This allows the RETURNING list of INSERT/UPDATE/DELETE/MERGE queries
to explicitly return old and new values by using the special aliases
"old" and "new", which are automatically added to the query (if not
already defined) while parsing its RETURNING list, allowing things
like:
RETURNING old.colname, new.colname, ...
RETURNING old.*, new.*
Additionally, a new syntax is supported, allowing the names "old" and
"new" to be changed to user-supplied alias names, e.g.:
RETURNING WITH (OLD AS o, NEW AS n) o.colname, n.colname, ...
This is useful when the names "old" and "new" are already defined,
such as inside trigger functions, allowing backwards compatibility to
be maintained -- the interpretation of any existing queries that
happen to already refer to relations called "old" or "new", or use
those as aliases for other relations, is not changed.
For an INSERT, old values will generally be NULL, and for a DELETE,
new values will generally be NULL, but that may change for an INSERT
with an ON CONFLICT ... DO UPDATE clause, or if a query rewrite rule
changes the command type. Therefore, we put no restrictions on the use
of old and new in any DML queries.
Dean Rasheed, reviewed by Jian He and Jeff Davis.
Discussion: https://postgr.es/m/CAEZATCWx0J0-v=Qjc6gXzR=KtsdvAE7Ow=D=mu50AgOe+pvisQ@mail.gmail.com
|
|
This adds support for the NOT ENFORCED/ENFORCED flag for constraints,
with support for check constraints.
The plan is to eventually support this for foreign key constraints,
where it is typically more useful.
Note that CHECK constraints do not currently support ALTER operations,
so changing the enforceability of an existing constraint isn't
possible without dropping and recreating it. This could be added
later.
Author: Amul Sul <[email protected]>
Reviewed-by: Peter Eisentraut <[email protected]>
Reviewed-by: jian he <[email protected]>
Tested-by: Triveni N <[email protected]>
Discussion: https://www.postgresql.org/message-id/flat/CAAJ_b962c5AcYW9KUt_R_ER5qs3fUGbe4az-SP-vuwPS-w-AGA@mail.gmail.com
|
|
Backpatch-through: 13
|
|
The new compact_attrs array stores a few select fields from
FormData_pg_attribute in a more compact way, using only 16 bytes per
column instead of the 104 bytes that FormData_pg_attribute uses. Using
CompactAttribute allows performance-critical operations such as tuple
deformation to be performed without looking at the FormData_pg_attribute
element in TupleDesc which means fewer cacheline accesses.
For some workloads, tuple deformation can be the most CPU intensive part
of processing the query. Some testing with 16 columns on a table
where the first column is variable length showed around a 10% increase in
transactions per second for an OLAP type query performing aggregation on
the 16th column. However, in certain cases, the increases were much
higher, up to ~25% on one AMD Zen4 machine.
This also makes pg_attribute.attcacheoff redundant. A follow-on commit
will remove it, thus shrinking the FormData_pg_attribute struct by 4
bytes.
Author: David Rowley
Reviewed-by: Andres Freund, Victor Yegorov
Discussion: https://postgr.es/m/CAApHDvrBztXP3yx=NKNmo3xwFAFhEdyPnvrDg3=M0RhDs+4vYw@mail.gmail.com
|
|
d4c3a156c added support that when the GROUP BY contained all of the
columns belonging to a relation's PRIMARY KEY, all other columns
belonging to that relation would be removed from the GROUP BY clause.
That's possible because all other columns are functionally dependent on
the PRIMARY KEY and those columns alone ensure the groups are distinct.
Here we expand on that optimization and allow it to work for any unique
indexes on the table rather than just the PRIMARY KEY index. This
normally requires that all columns in the index are defined with NOT NULL,
however, we can relax that requirement when the index is defined with
NULLS NOT DISTINCT.
When there are multiple suitable indexes to allow columns to be removed,
we prefer the index with the least number of columns as this allows us
to remove the highest number of GROUP BY columns. One day, we may want to
revisit that decision as it may make more sense to use the narrower set of
columns in terms of the width of the data types and stored/queried data.
This also adjusts the code to make use of RelOptInfo.indexlist rather
than looking up the catalog tables.
In passing, add another short-circuit path to allow bailing out earlier
in cases where it's certainly not possible to remove redundant GROUP BY
columns. This early exit is now cheaper to do than when this code was
originally written as 00b41463c made it cheaper to check for empty
Bitmapsets.
Patch originally by Zhang Mingli and later worked on by jian he, but after
I (David) worked on it, there was very little of the original left.
Author: Zhang Mingli, jian he, David Rowley
Reviewed-by: jian he, Andrei Lepikhov
Discussion: https://postgr.es/m/327990c8-b9b2-4b0c-bffb-462249f82de0%40Spark
|
|
We now create contype='n' pg_constraint rows for not-null constraints on
user tables. Only one such constraint is allowed for a column.
We propagate these constraints to other tables during operations such as
adding inheritance relationships, creating and attaching partitions and
creating tables LIKE other tables. These related constraints mostly
follow the well-known rules of conislocal and coninhcount that we have
for CHECK constraints, with some adaptations: for example, as opposed to
CHECK constraints, we don't match not-null ones by name when descending
a hierarchy to alter or remove it, instead matching by the name of the
column that they apply to. This means we don't require the constraint
names to be identical across a hierarchy.
The inheritance status of these constraints can be controlled: now we
can be sure that if a parent table has one, then all children will have
it as well. They can optionally be marked NO INHERIT, and then children
are free not to have one. (There's currently no support for altering a
NO INHERIT constraint into inheriting down the hierarchy, but that's a
desirable future feature.)
This also opens the door for having these constraints be marked NOT
VALID, as well as allowing UNIQUE+NOT NULL to be used for functional
dependency determination, as envisioned by commit e49ae8d3bc58. It's
likely possible to allow DEFERRABLE constraints as followup work, as
well.
psql shows these constraints in \d+, though we may want to reconsider if
this turns out to be too noisy. Earlier versions of this patch hid
constraints that were on the same columns of the primary key, but I'm
not sure that that's very useful. If clutter is a problem, we might be
better off inventing a new \d++ command and not showing the constraints
in \d+.
For now, we omit these constraints on system catalog columns, because
they're unlikely to achieve anything.
The main difference to the previous attempt at this (b0e96f311985) is
that we now require that such a constraint always exists when a primary
key is in the column; we didn't require this previously which had a
number of unpalatable consequences. With this requirement, the code is
easier to reason about. For example:
- We no longer have "throwaway constraints" during pg_dump. We needed
those for the case where a table had a PK without a not-null
underneath, to prevent a slow scan of the data during restore of the
PK creation, which was particularly problematic for pg_upgrade.
- We no longer have to cope with attnotnull being set spuriously in
case a primary key is dropped indirectly (e.g., via DROP COLUMN).
Some bits of code in this patch were authored by Jian He.
Author: Álvaro Herrera <[email protected]>
Author: Bernd Helmle <[email protected]>
Reviewed-by: 何建 (jian he) <[email protected]>
Reviewed-by: 王刚 (Tender Wang) <[email protected]>
Reviewed-by: Justin Pryzby <[email protected]>
Reviewed-by: Peter Eisentraut <[email protected]>
Reviewed-by: Dean Rasheed <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
Add WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints.
These are backed by GiST indexes instead of B-tree indexes, since they
are essentially exclusion constraints with = for the scalar parts of
the key and && for the temporal part.
(previously committed as 46a0cd4cefb, reverted by 46a0cd4cefb; the new
part is this:)
Because 'empty' && 'empty' is false, the temporal PK/UQ constraint
allowed duplicates, which is confusing to users and breaks internal
expectations. For instance, when GROUP BY checks functional
dependencies on the PK, it allows selecting other columns from the
table, but in the presence of duplicate keys you could get the value
from any of their rows. So we need to forbid empties.
This all means that at the moment we can only support ranges and
multiranges for temporal PK/UQs, unlike the original patch (above).
Documentation and tests for this are added. But this could
conceivably be extended by introducing some more general support for
the notion of "empty" for other types.
Author: Paul A. Jungwirth <[email protected]>
Reviewed-by: Peter Eisentraut <[email protected]>
Reviewed-by: jian he <[email protected]>
Discussion: https://www.postgresql.org/message-id/flat/CA+renyUApHgSZF9-nd-a0+OPGharLQLO=mDHcY4_qQ0+noCUVg@mail.gmail.com
|
|
The only current implementation is for btree where it calls
_bt_getrootheight(). Other index types can now also use this to pass
information to their amcostestimate routine. Previously, btree was
hardcoded and other index types could not hook into the optimizer at
this point.
Author: Mark Dilger <[email protected]>
Discussion: https://www.postgresql.org/message-id/flat/[email protected]
|
|
When pg_dump retrieves the list of database objects and performs the
data dump, there was possibility that objects are replaced with others
of the same name, such as views, and access them. This vulnerability
could result in code execution with superuser privileges during the
pg_dump process.
This issue can arise when dumping data of sequences, foreign
tables (only 13 or later), or tables registered with a WHERE clause in
the extension configuration table.
To address this, pg_dump now utilizes the newly introduced
restrict_nonsystem_relation_kind GUC parameter to restrict the
accesses to non-system views and foreign tables during the dump
process. This new GUC parameter is added to back branches too, but
these changes do not require cluster recreation.
Back-patch to all supported branches.
Reviewed-by: Noah Misch
Security: CVE-2024-7348
Backpatch-through: 12
|
|
A few places were directly accessing the attrs[] array. This goes
against the standards set by 2cd708452. Fix that.
Discussion: https://postgr.es/m/CAApHDvrBztXP3yx=NKNmo3xwFAFhEdyPnvrDg3=M0RhDs+4vYw@mail.gmail.com
|
|
infer_arbiter_indexes failed to renumber varnos in index expressions
or predicates that it got from the catalogs. This escaped detection
up to now because the stored varnos in such trees will be 1, and an
INSERT's result relation is usually the first rangetable entry,
so that that was fine. However, in cases such as inserting through
an updatable view, it's not fine, leading to failure to match the
expressions to the query with ensuing "there is no unique or exclusion
constraint matching the ON CONFLICT specification" errors.
Fix by copy-and-paste from get_relation_info().
Per bug #18502 from Michael Wang. Back-patch to all supported
versions.
Discussion: https://postgr.es/m/[email protected]
|
|
This feature set did not handle empty ranges correctly, and it's now
too late for PostgreSQL 17 to fix it.
The following commits are reverted:
6db4598fcb8 Add stratnum GiST support function
46a0cd4cefb Add temporal PRIMARY KEY and UNIQUE constraints
86232a49a43 Fix comment on gist_stratnum_btree
030e10ff1a3 Rename pg_constraint.conwithoutoverlaps to conperiod
a88c800deb6 Use daterange and YMD in without_overlaps tests instead of tsrange.
5577a71fb0c Use half-open interval notation in without_overlaps tests
34768ee3616 Add temporal FOREIGN KEY contraints
482e108cd38 Add test for REPLICA IDENTITY with a temporal key
c3db1f30cba doc: clarify PERIOD and WITHOUT OVERLAPS in CREATE TABLE
144c2ce0cc7 Fix ON CONFLICT DO NOTHING/UPDATE for temporal indexes
Discussion: https://www.postgresql.org/message-id/[email protected]
|
|
There are some problems with the new way to handle these constraints
that were detected at the last minute, and require fixes that appear too
invasive to be doing this late in the cycle. Revert this (again) for
now, we'll try again with these problems fixed.
The following commits are reverted:
b0e96f311985 Catalog not-null constraints
9b581c534186 Disallow changing NO INHERIT status of a not-null constraint
d0ec2ddbe088 Fix not-null constraint test
ac22a9545ca9 Move privilege check to the right place
b0f7dd915bca Check stack depth in new recursive functions
3af721794272 Update information_schema definition for not-null constraints
c3709100be73 Fix propagating attnotnull in multiple inheritance
d9f686a72ee9 Fix restore of not-null constraints with inheritance
d72d32f52d26 Don't try to assign smart names to constraints
0cd711271d42 Better handle indirect constraint drops
13daa33fa5a6 Disallow NO INHERIT not-null constraints on partitioned tables
d45597f72fe5 Disallow direct change of NO INHERIT of not-null constraints
21ac38f498b3 Fix inconsistencies in error messages
Discussion: https://postgr.es/m/[email protected]
|
|
A PRIMARY KEY or UNIQUE constraint with WITHOUT OVERLAPS will be a
GiST index, not a B-Tree, but it will still have indisunique set. The
code for ON CONFLICT fails if it sees a non-btree index that has
indisunique. This commit fixes that and adds some tests. But now
that we can't just test indisunique, we also need some extra checks to
prevent DO UPDATE from running against a WITHOUT OVERLAPS constraint
(because the conflict could happen against more than one row, and we'd
only update one).
Author: Paul A. Jungwirth <[email protected]>
Discussion: https://www.postgresql.org/message-id/[email protected]
|
|
b262ad440 added code to have the planner remove redundant IS NOT NULL
quals and eliminate needless scans for IS NULL quals on tables where the
qual's column has a NOT NULL constraint.
That commit failed to consider that an inheritance parent table could
have differing NOT NULL constraints between the parent and the child.
This caused issues as if we eliminated a qual on the parent, when
applying the quals to child tables in apply_child_basequals(), the qual
might not have been added to the parent's baserestrictinfo.
Here we fix this by not applying the optimization to remove redundant
quals to RelOptInfos belonging to inheritance parents and applying the
optimization again in apply_child_basequals(). Effectively, this means
that the parent and child are considered independently as the parent has
both an inh=true and inh=false RTE and we still apply the optimization
to the RelOptInfo corresponding to the inh=false RTE.
We're able to still apply the optimization in add_base_clause_to_rel()
for partitioned tables as the NULLability of partitions must match that
of their parent. And, if we ever expand restriction_is_always_false()
and restriction_is_always_true() to handle partition constraints then we
can apply the same logic as, even in multi-level partitioned tables,
there's no way to route values to a partition when the qual does not
match the partition qual of the partitioned table's parent partition.
The same is true for CHECK constraints as those must also match between
arent partitioned tables and their partitions.
Author: Richard Guo, David Rowley
Discussion: https://postgr.es/m/CAMbWs4930gQSZmjR7aANzEapdy61gCg6z8dT-kAEYD0sYWKPdQ@mail.gmail.com
|
|
as determined by include-what-you-use (IWYU)
While IWYU also suggests to *add* a bunch of #include's (which is its
main purpose), this patch does not do that. In some cases, a more
specific #include replaces another less specific one.
Some manual adjustments of the automatic result:
- IWYU currently doesn't know about includes that provide global
variable declarations (like -Wmissing-variable-declarations), so
those includes are being kept manually.
- All includes for port(ability) headers are being kept for now, to
play it safe.
- No changes of catalog/pg_foo.h to catalog/pg_foo_d.h, to keep the
patch from exploding in size.
Note that this patch touches just *.c files, so nothing declared in
header files changes in hidden ways.
As a small example, in src/backend/access/transam/rmgr.c, some IWYU
pragma annotations are added to handle a special case there.
Discussion: https://www.postgresql.org/message-id/flat/af837490-6b2f-46df-ba05-37ea6a6653fc%40eisentraut.org
|
|
Until now PostgreSQL has not been very smart about optimizing away IS
NOT NULL base quals on columns defined as NOT NULL. The evaluation of
these needless quals adds overhead. Ordinarily, anyone who came
complaining about that would likely just have been told to not include
the qual in their query if it's not required. However, a recent bug
report indicates this might not always be possible.
Bug 17540 highlighted that when we optimize Min/Max aggregates the IS NOT
NULL qual that the planner adds to make the rewritten plan ignore NULLs
can cause issues with poor index choice. That particular case
demonstrated that other quals, especially ones where no statistics are
available to allow the planner a chance at estimating an approximate
selectivity for can result in poor index choice due to cheap startup paths
being prefered with LIMIT 1.
Here we take generic approach to fixing this by having the planner check
for NOT NULL columns and just have the planner remove these quals (when
they're not needed) for all queries, not just when optimizing Min/Max
aggregates.
Additionally, here we also detect IS NULL quals on a NOT NULL column and
transform that into a gating qual so that we don't have to perform the
scan at all. This also works for join relations when the Var is not
nullable by any outer join.
This also helps with the self-join removal work as it must replace
strict join quals with IS NOT NULL quals to ensure equivalence with the
original query.
Author: David Rowley, Richard Guo, Andy Fan
Reviewed-by: Richard Guo, David Rowley
Discussion: https://postgr.es/m/CAApHDvqg6XZDhYRPz0zgOcevSMo0d3vxA9DvHrZtKfqO30WTnw@mail.gmail.com
Discussion: https://postgr.es/m/17540-7aa1855ad5ec18b4%40postgresql.org
|
|
Reported-by: Michael Paquier
Discussion: https://postgr.es/m/[email protected]
Backpatch-through: 12
|
|
It's at least theoretically possible to overflow int32 when adding up
column width estimates to make a row width estimate. (The bug example
isn't terribly convincing as a real use-case, but perhaps wide joins
would provide a more plausible route to trouble.) This'd lead to
assertion failures or silly planner behavior. To forestall it, make
the relevant functions compute their running sums in int64 arithmetic
and then clamp to int32 range at the end. We can reasonably assume
that MaxAllocSize is a hard limit on actual tuple width, so clamping
to that is simply a correction for dubious input values, and there's
no need to go as far as widening width variables to int64 everywhere.
Per bug #18247 from RekGRpth. There've been no reports of this issue
arising in practical cases, so I feel no need to back-patch.
Richard Guo and Tom Lane
Discussion: https://postgr.es/m/[email protected]
|
|
In commit 3fc6e2d7f, I (tgl) argued that we only need to check for
a constant-FALSE restriction clause when there's exactly one
restriction clause, on the grounds that const-folding would have
thrown away anything ANDed with a Const FALSE. That's true just after
const-folding has been applied, but subsequent processing such as
equivalence class expansion could result in cases where a Const FALSE
is ANDed with some other stuff. (Compare for instance joinrels.c's
restriction_is_constant_false.) Hence, tweak this logic to check all
the elements of the baserestrictinfo list, not just one; that's cheap
enough to not be worth worrying about.
There is one existing test case where this visibly improves the plan.
There would not be any savings in runtime, but the planner effort and
executor startup effort will be reduced, and anyway it's odd that
we can detect related cases but not this one.
Richard Guo (independently discovered by David Rowley)
Discussion: https://postgr.es/m/CAMbWs4_x3-CnVVrCboS1LkEhB5V+W7sLSCabsRiG+n7+5_kqbg@mail.gmail.com
|
|
We now create contype='n' pg_constraint rows for not-null constraints.
We propagate these constraints to other tables during operations such as
adding inheritance relationships, creating and attaching partitions and
creating tables LIKE other tables. We also spawn not-null constraints
for inheritance child tables when their parents have primary keys.
These related constraints mostly follow the well-known rules of
conislocal and coninhcount that we have for CHECK constraints, with some
adaptations: for example, as opposed to CHECK constraints, we don't
match not-null ones by name when descending a hierarchy to alter it,
instead matching by column name that they apply to. This means we don't
require the constraint names to be identical across a hierarchy.
For now, we omit them for system catalogs. Maybe this is worth
reconsidering. We don't support NOT VALID nor DEFERRABLE clauses
either; these can be added as separate features later (this patch is
already large and complicated enough.)
psql shows these constraints in \d+.
pg_dump requires some ad-hoc hacks, particularly when dumping a primary
key. We now create one "throwaway" not-null constraint for each column
in the PK together with the CREATE TABLE command, and once the PK is
created, all those throwaway constraints are removed. This avoids
having to check each tuple for nullness when the dump restores the
primary key creation.
pg_upgrading from an older release requires a somewhat brittle procedure
to create a constraint state that matches what would be created if the
database were being created fresh in Postgres 17. I have tested all the
scenarios I could think of, and it works correctly as far as I can tell,
but I could have neglected weird cases.
This patch has been very long in the making. The first patch was
written by Bernd Helmle in 2010 to add a new pg_constraint.contype value
('n'), which I (Álvaro) then hijacked in 2011 and 2012, until that one
was killed by the realization that we ought to use contype='c' instead:
manufactured CHECK constraints. However, later SQL standard
development, as well as nonobvious emergent properties of that design
(mostly, failure to distinguish them from "normal" CHECK constraints as
well as the performance implication of having to test the CHECK
expression) led us to reconsider this choice, so now the current
implementation uses contype='n' again. During Postgres 16 this had
already been introduced by commit e056c557aef4, but there were some
problems mainly with the pg_upgrade procedure that couldn't be fixed in
reasonable time, so it was reverted.
In 2016 Vitaly Burovoy also worked on this feature[1] but found no
consensus for his proposed approach, which was claimed to be closer to
the letter of the standard, requiring an additional pg_attribute column
to track the OID of the not-null constraint for that column.
[1] https://postgr.es/m/CAKOSWNkN6HSyatuys8xZxzRCR-KL1OkHS5-b9qd9bf1Rad3PLA@mail.gmail.com
Author: Álvaro Herrera <[email protected]>
Author: Bernd Helmle <[email protected]>
Reviewed-by: Justin Pryzby <[email protected]>
Reviewed-by: Peter Eisentraut <[email protected]>
Reviewed-by: Dean Rasheed <[email protected]>
|
|
Split nbtree's _bt_getbuf function is two: code that read locks or write
locks existing pages remains in _bt_getbuf, while code that deals with
allocating new pages is moved to a new, dedicated function called
_bt_allocbuf. This simplifies most _bt_getbuf callers, since it is no
longer necessary for them to pass a heaprel argument. Many of the
changes to nbtree from commit 61b313e4 can be reverted. This minimizes
the divergence between HEAD/PostgreSQL 16 and earlier release branches.
_bt_allocbuf replaces the previous nbtree idiom of passing P_NEW to
_bt_getbuf. There are only 3 affected call sites, all of which continue
to pass a heaprel for recovery conflict purposes. Note that nbtree's
use of P_NEW was superficial; nbtree never actually relied on the P_NEW
code paths in bufmgr.c, so this change is strictly mechanical.
GiST already took the same approach; it has a dedicated function for
allocating new pages called gistNewBuffer(). That factor allowed commit
61b313e4 to make much more targeted changes to GiST.
Author: Peter Geoghegan <[email protected]>
Reviewed-By: Heikki Linnakangas <[email protected]>
Discussion: https://postgr.es/m/CAH2-Wz=8Z9qY58bjm_7TAHgtW6RzZ5Ke62q5emdCEy9BAzwhmg@mail.gmail.com
|
|
Author: Justin Pryzby
Reviewed-by: David Rowley
Discussion: https://postgr.es/m/[email protected]
|
|
This reverts commit e056c557aef4 and minor later fixes thereof.
There's a few problems in this new feature -- most notably regarding
pg_upgrade behavior, but others as well. This new feature is not in any
way critical on its own, so instead of scrambling to fix it we revert it
and try again in early 17 with these issues in mind.
Discussion: https://postgr.es/m/[email protected]
|
|
We now create pg_constaint rows for NOT NULL constraints with
contype='n'.
We propagate these constraints during operations such as adding
inheritance relationships, creating and attaching partitions, creating
tables LIKE other tables. We mostly follow the well-known rules of
conislocal and coninhcount that we have for CHECK constraints, with some
adaptations; for example, as opposed to CHECK constraints, we don't
match NOT NULL ones by name when descending a hierarchy to alter it;
instead we match by column number. This means we don't require the
constraint names to be identical across a hierarchy.
For now, we omit them from system catalogs. Maybe this is worth
reconsidering. We don't support NOT VALID nor DEFERRABLE clauses
either; these can be added as separate features later (this patch is
already large and complicated enough.)
This has been very long in the making. The first patch was written by
Bernd Helmle in 2010 to add a new pg_constraint.contype value ('n'),
which I (Álvaro) then hijacked in 2011 and 2012, until that one was
killed by the realization that we ought to use contype='c' instead:
manufactured CHECK constraints. However, later SQL standard
development, as well as nonobvious emergent properties of that design
(mostly, failure to distinguish them from "normal" CHECK constraints as
well as the performance implication of having to test the CHECK
expression) led us to reconsider this choice, so now the current
implementation uses contype='n' again.
In 2016 Vitaly Burovoy also worked on this feature[1] but found no
consensus for his proposed approach, which was claimed to be closer to
the letter of the standard, requiring additional pg_attribute columns to
track the OID of the NOT NULL constraint for that column.
[1] https://postgr.es/m/CAKOSWNkN6HSyatuys8xZxzRCR-KL1OkHS5-b9qd9bf1Rad3PLA@mail.gmail.com
Author: Álvaro Herrera <[email protected]>
Author: Bernd Helmle <[email protected]>
Reviewed-by: Justin Pryzby <[email protected]>
Reviewed-by: Peter Eisentraut <[email protected]>
Discussion: https://postgr.es/m/CACA0E642A0267EDA387AF2B%40%5B172.26.14.62%5D
Discussion: https://postgr.es/m/[email protected]
Discussion: https://postgr.es/m/[email protected]
Discussion: https://postgr.es/m/[email protected]
Discussion: https://postgr.es/m/CAKOSWNkN6HSyatuys8xZxzRCR-KL1OkHS5-b9qd9bf1Rad3PLA@mail.gmail.com
Discussion: https://postgr.es/m/[email protected]
|
|
This is done in preparation for logical decoding on standby, which needs to
include whether visibility affecting WAL records are about a (user) catalog
table. Which is only known for the table, not the indexes.
It's also nice to be able to pass the heap relation to GlobalVisTestFor() in
vacuumRedirectAndPlaceholder().
Author: "Drouvot, Bertrand" <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
This allows left join removals and unique joins to work with partitioned
tables. The planner just lacked sufficient proofs that a given join
would not cause any row duplication. Unique indexes currently serve as
that proof, so have get_relation_info() populate the indexlist for
partitioned tables too.
Author: Arne Roland
Reviewed-by: Alvaro Herrera, Zhihong Yu, Amit Langote, David Rowley
Discussion: https://postgr.es/m/[email protected]
|
|
We were identifying the updatable generated columns of inheritance
children by transposing the calculation made for their parent.
However, there's nothing that says a traditional-inheritance child
can't have generated columns that aren't there in its parent, or that
have different dependencies than are in the parent's expression.
(At present it seems that we don't enforce that for partitioning
either, which is likely wrong to some degree or other; but the case
clearly needs to be handled with traditional inheritance.)
Hence, drop the very-klugy-anyway "extraUpdatedCols" RTE field
in favor of identifying which generated columns depend on updated
columns during executor startup. In HEAD we can remove
extraUpdatedCols altogether; in back branches, it's still there but
always empty. Another difference between the HEAD and back-branch
versions of this patch is that in HEAD we can add the new bitmap field
to ResultRelInfo, but that would cause an ABI break in back branches.
Like 4b3e37993, add a List field at the end of struct EState instead.
Back-patch to v13. The bogus calculation is also being made in v12,
but it doesn't have the same visible effect because we don't use it
to decide which generated columns to recalculate; as a consequence of
which the patch doesn't apply easily. I think that there might still
be a demonstrable bug associated with trigger firing conditions, but
that's such a weird corner-case usage that I'm content to leave it
unfixed in v12.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqFshLKNvQUd1DgwJ-7tsTp=dwv7KZqXC4j2wYBV1aCDUA@mail.gmail.com
Discussion: https://postgr.es/m/[email protected]
|
|
Backpatch-through: 11
|
|
The executor will dump core if it's asked to execute a seqscan on
a relation having no table AM, such as a view. While that shouldn't
really happen, it's possible to get there via catalog corruption,
such as a missing ON SELECT rule. It seems worth installing a defense
against that. There are multiple plausible places for such a defense,
but I picked the planner's get_relation_info().
Per discussion of bug #17646 from Kui Liu. Back-patch to v12 where
the tableam APIs were introduced; in older versions you won't get a
SIGSEGV, so it seems less pressing.
Discussion: https://postgr.es/m/[email protected]
|
|
Make sure that function declarations use names that exactly match the
corresponding names from function definitions in optimizer, parser,
utility, libpq, and "commands" code, as well as in remaining library
code. Do the same for all code related to frontend programs (with the
exception of pg_dump/pg_dumpall related code).
Like other recent commits that cleaned up function parameter names, this
commit was written with help from clang-tidy. Later commits will handle
ecpg and pg_dump/pg_dumpall.
Author: Peter Geoghegan <[email protected]>
Reviewed-By: David Rowley <[email protected]>
Discussion: https://postgr.es/m/CAH2-WznJt9CMM9KJTMjJh_zbL5hD9oX44qdJ4aqZtjFi-zA3Tg@mail.gmail.com
|
|
Run pgindent, pgperltidy, and reformat-dat-files.
I manually fixed a couple of comments that pgindent uglified.
|
|
MERGE performs actions that modify rows in the target table using a
source table or query. MERGE provides a single SQL statement that can
conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise
require multiple PL statements. For example,
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular tables, partitioned tables and inheritance
hierarchies, including column and row security enforcement, as well as
support for row and statement triggers and transition tables therein.
MERGE is optimized for OLTP and is parameterizable, though also useful
for large scale ETL/ELT. MERGE is not intended to be used in preference
to existing single SQL commands for INSERT, UPDATE or DELETE since there
is some overhead. MERGE can be used from PL/pgSQL.
MERGE does not support targetting updatable views or foreign tables, and
RETURNING clauses are not allowed either. These limitations are likely
fixable with sufficient effort. Rewrite rules are also not supported,
but it's not clear that we'd want to support them.
Author: Pavan Deolasee <[email protected]>
Author: Álvaro Herrera <[email protected]>
Author: Amit Langote <[email protected]>
Author: Simon Riggs <[email protected]>
Reviewed-by: Peter Eisentraut <[email protected]>
Reviewed-by: Andres Freund <[email protected]> (earlier versions)
Reviewed-by: Peter Geoghegan <[email protected]> (earlier versions)
Reviewed-by: Robert Haas <[email protected]> (earlier versions)
Reviewed-by: Japin Li <[email protected]>
Reviewed-by: Justin Pryzby <[email protected]>
Reviewed-by: Tomas Vondra <[email protected]>
Reviewed-by: Zhihong Yu <[email protected]>
Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Discussion: https://postgr.es/m/[email protected]
|
|
Add pg_statistic_ext_data.stxdinherit flag, so that for each extended
statistics definition we can store two versions of data - one for the
relation alone, one for the whole inheritance tree. This is analogous to
pg_statistic.stainherit, but we failed to include such flag in catalogs
for extended statistics, and we had to work around it (see commits
859b3003de, 36c4bc6e72 and 20b9fa308e).
This changes the relationship between the two catalogs storing extended
statistics objects (pg_statistic_ext and pg_statistic_ext_data). Until
now, there was a simple 1:1 mapping - for each definition there was one
pg_statistic_ext_data row, and this row was inserted while creating the
statistics (and then updated during ANALYZE). With the stxdinherit flag,
we don't know how many rows there will be (child relations may be added
after the statistics object is defined), so there may be up to two rows.
We could make CREATE STATISTICS to always create both rows, but that
seems wasteful - without partitioning we only need stxdinherit=false
rows, and declaratively partitioned tables need only stxdinherit=true.
So we no longer initialize pg_statistic_ext_data in CREATE STATISTICS,
and instead make that a responsibility of ANALYZE. Which is what we do
for regular statistics too.
Patch by me, with extensive improvements and fixes by Justin Pryzby.
Author: Tomas Vondra, Justin Pryzby
Reviewed-by: Tomas Vondra, Justin Pryzby
Discussion: https://postgr.es/m/20210923212624.GI831%40telsasoft.com
|
|
Backpatch-through: 10
|
|
Add more macros to group some RELKIND_* macros:
- RELKIND_HAS_PARTITIONS()
- RELKIND_HAS_TABLESPACE()
- RELKIND_HAS_TABLE_AM()
Reviewed-by: Michael Paquier <[email protected]>
Reviewed-by: Alvaro Herrera <[email protected]>
Discussion: https://www.postgresql.org/message-id/flat/a574c8f1-9c84-93ad-a9e5-65233d6fc00f%40enterprisedb.com
|
|
Design problems were discovered in the handling of composite types and
record types that would cause some relevant versions not to be recorded.
Misgivings were also expressed about the use of the pg_depend catalog
for this purpose. We're out of time for this release so we'll revert
and try again.
Commits reverted:
1bf946bd: Doc: Document known problem with Windows collation versions.
cf002008: Remove no-longer-relevant test case.
ef387bed: Fix bogus collation-version-recording logic.
0fb0a050: Hide internal error for pg_collation_actual_version(<bad OID>).
ff942057: Suppress "warning: variable 'collcollate' set but not used".
d50e3b1f: Fix assertion in collation version lookup.
f24b1569: Rethink extraction of collation dependencies.
257836a7: Track collation versions for indexes.
cd6f479e: Add pg_depend.refobjversion.
7d1297df: Remove pg_collation.collversion.
Discussion: https://postgr.es/m/CA%2BhUKGLhj5t1fcjqAu8iD9B3ixJtsTNqyCCD4V0aTO9kAKAjjA%40mail.gmail.com
|
|
During queries coming from ri_triggers.c, we need to omit partitions
that are marked pending detach -- otherwise, the RI query is tricked
into allowing a row into the referencing table whose corresponding row
is in the detached partition. Which is bogus: once the detach operation
completes, the row becomes an orphan.
However, the code was not doing that in repeatable-read transactions,
because relcache kept a copy of the partition descriptor that included
the partition, and used it in the RI query. This commit changes the
partdesc cache code to only keep descriptors that aren't dependent on
a snapshot (namely: those where no detached partition exist, and those
where detached partitions are included). When a partdesc-without-
detached-partitions is requested, we create one afresh each time; also,
those partdescs are stored in PortalContext instead of
CacheMemoryContext.
find_inheritance_children gets a new output *detached_exist boolean,
which indicates whether any partition marked pending-detach is found.
Its "include_detached" input flag is changed to "omit_detached", because
that name captures desired the semantics more naturally.
CreatePartitionDirectory() and RelationGetPartitionDesc() arguments are
identically renamed.
This was noticed because a buildfarm member that runs with relcache
clobbering, which would not keep the improperly cached partdesc, broke
one test, which led us to realize that the expected output of that test
was bogus. This commit also corrects that expected output.
Author: Amit Langote <[email protected]>
Author: Álvaro Herrera <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
This patch makes two closely related sets of changes:
1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns. The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree. The disadvantage of course
is an extra fetch of each tuple to be updated. However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost. At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.
2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that. To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information. This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.
Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy. Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD. (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)
There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.
FDW authors should note several API changes:
* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query. Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.
* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable. See postgres_fdw for sample code.
* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
|
|
Allow defining extended statistics on expressions, not just just on
simple column references. With this commit, expressions are supported
by all existing extended statistics kinds, improving the same types of
estimates. A simple example may look like this:
CREATE TABLE t (a int);
CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t;
ANALYZE t;
The collected statistics are useful e.g. to estimate queries with those
expressions in WHERE or GROUP BY clauses:
SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0;
SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20);
This introduces new internal statistics kind 'e' (expressions) which is
built automatically when the statistics object definition includes any
expressions. This represents single-expression statistics, as if there
was an expression index (but without the index maintenance overhead).
The statistics is stored in pg_statistics_ext_data as an array of
composite types, which is possible thanks to 79f6a942bd.
CREATE STATISTICS allows building statistics on a single expression, in
which case in which case it's not possible to specify statistics kinds.
A new system view pg_stats_ext_exprs can be used to display expression
statistics, similarly to pg_stats and pg_stats_ext views.
ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it
treats indexes, i.e. it drops and recreates the statistics. This means
all statistics are reset, and we no longer try to preserve at least the
functional dependencies. This should not be a major issue in practice,
as the functional dependencies actually rely on per-column statistics,
which were always reset anyway.
Author: Tomas Vondra
Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu
Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
|
|
Allow a partition be detached from its partitioned table without
blocking concurrent queries, by running in two transactions and only
requiring ShareUpdateExclusive in the partitioned table.
Because it runs in two transactions, it cannot be used in a transaction
block. This is the main reason to use dedicated syntax: so that users
can choose to use the original mode if they need it. But also, it
doesn't work when a default partition exists (because an exclusive lock
would still need to be obtained on it, in order to change its partition
constraint.)
In case the second transaction is cancelled or a crash occurs, there's
ALTER TABLE .. DETACH PARTITION .. FINALIZE, which executes the final
steps.
The main trick to make this work is the addition of column
pg_inherits.inhdetachpending, initially false; can only be set true in
the first part of this command. Once that is committed, concurrent
transactions that use a PartitionDirectory will include or ignore
partitions so marked: in optimizer they are ignored if the row is marked
committed for the snapshot; in executor they are always included. As a
result, and because of the way PartitionDirectory caches partition
descriptors, queries that were planned before the detach will see the
rows in the detached partition and queries that are planned after the
detach, won't.
A CHECK constraint is created that duplicates the partition constraint.
This is probably not strictly necessary, and some users will prefer to
remove it afterwards, but if the partition is re-attached to a
partitioned table, the constraint needn't be rechecked.
Author: Álvaro Herrera <[email protected]>
Reviewed-by: Amit Langote <[email protected]>
Reviewed-by: Justin Pryzby <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
Previously, to check relation permanence, the Relation's Form_pg_class
structure member relpersistence was compared to the value
RELPERSISTENCE_PERMANENT ("p"). This commit adds the macro
RelationIsPermanent() and is used in appropirate places to simplify the
code. This matches other RelationIs* macros.
This macro will be used in more places in future cluster file encryption
patches.
Discussion: https://postgr.es/m/[email protected]
|
|
This adds a new executor node named TID Range Scan. The query planner
will generate paths for TID Range scans when quals are discovered on base
relations which search for ranges on the table's ctid column. These
ranges may be open at either end. For example, WHERE ctid >= '(10,0)';
will return all tuples on page 10 and over.
To support this, two new optional callback functions have been added to
table AM. scan_set_tidrange is used to set the scan range to just the
given range of TIDs. scan_getnextslot_tidrange fetches the next tuple
in the given range.
For AMs were scanning ranges of TIDs would not make sense, these functions
can be set to NULL in the TableAmRoutine. The query planner won't
generate TID Range Scan Paths in that case.
Author: Edmund Horner, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu
Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
|
|
CREATE PUBLICATION has failed spuriously when applied to a permanent
relation created or rewritten in the current transaction. Make the same
change to another site having the same semantic intent; the second
instance has no user-visible consequences. Back-patch to v13, where
commit c6b92041d38512a4176ed76ad06f713d2e6c01a8 broke this.
Kyotaro Horiguchi
Discussion: https://postgr.es/m/[email protected]
|
|
Backpatch-through: 9.5
|