1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
|
/*-------------------------------------------------------------------------
*
* ilist.h
* integrated/inline doubly- and singly-linked lists
*
* This implementation is as efficient as possible: the lists don't have
* any memory management overhead, because the list pointers are embedded
* within some larger structure.
*
* There are two kinds of empty doubly linked lists: those that have been
* initialized to NULL, and those that have been initialized to circularity.
* The second kind is useful for tight optimization, because there are some
* operations that can be done without branches (and thus faster) on lists that
* have been initialized to circularity. Most users don't care all that much,
* and so can skip the initialization step until really required.
*
* NOTES
* This is intended to be used in situations where memory for a struct and
* its contents already needs to be allocated and the overhead of
* allocating extra list cells for every list element is noticeable. Thus,
* none of the functions here allocate any memory; they just manipulate
* externally managed memory. The API for singly/doubly linked lists is
* identical as far as capabilities of both allow.
*
* EXAMPLES
*
* Here's a simple example demonstrating how this can be used. Let's assume we
* want to store information about the tables contained in a database.
*
* #include "lib/ilist.h"
*
* // Define struct for the databases including a list header that will be used
* // to access the nodes in the list later on.
* typedef struct my_database
* {
* char *datname;
* dlist_head tables;
* // ...
* } my_database;
*
* // Define struct for the tables. Note the list_node element which stores
* // information about prev/next list nodes.
* typedef struct my_table
* {
* char *tablename;
* dlist_node list_node;
* perm_t permissions;
* // ...
* } my_table;
*
* // create a database
* my_database *db = create_database();
*
* // and add a few tables to its table list
* dlist_push_head(&db->tables, &create_table(db, "a")->list_node);
* ...
* dlist_push_head(&db->tables, &create_table(db, "b")->list_node);
*
*
* To iterate over the table list, we allocate an iterator element and use
* a specialized looping construct. Inside a dlist_foreach, the iterator's
* 'cur' field can be used to access the current element. iter.cur points to a
* 'dlist_node', but most of the time what we want is the actual table
* information; dlist_container() gives us that, like so:
*
* dlist_iter iter;
* dlist_foreach(iter, &db->tables)
* {
* my_table *tbl = dlist_container(my_table, list_node, iter.cur);
* printf("we have a table: %s in database %s\n",
* tbl->tablename, db->datname);
* }
*
*
* While a simple iteration is useful, we sometimes also want to manipulate
* the list while iterating. There is a different iterator element and looping
* construct for that. Suppose we want to delete tables that meet a certain
* criterion:
*
* dlist_mutable_iter miter;
* dlist_foreach_modify(miter, &db->tables)
* {
* my_table *tbl = dlist_container(my_table, list_node, miter.cur);
*
* if (!tbl->to_be_deleted)
* continue; // don't touch this one
*
* // unlink the current table from the linked list
* dlist_delete(&db->tables, miter.cur);
* // as these lists never manage memory, we can freely access the table
* // after it's been deleted
* drop_table(db, tbl);
* }
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/include/lib/ilist.h
*-------------------------------------------------------------------------
*/
#ifndef ILIST_H
#define ILIST_H
/*
* Enable for extra debugging. This is rather expensive, so it's not enabled by
* default even when USE_ASSERT_CHECKING.
*/
/* #define ILIST_DEBUG */
/*
* Node of a doubly linked list.
*
* Embed this in structs that need to be part of a doubly linked list.
*/
typedef struct dlist_node dlist_node;
struct dlist_node
{
dlist_node *prev;
dlist_node *next;
};
/*
* Head of a doubly linked list.
*
* Non-empty lists are internally circularly linked. Circular lists have the
* advantage of not needing any branches in the most common list manipulations.
* An empty list can also be represented as a pair of NULL pointers, making
* initialization easier.
*/
typedef struct dlist_head
{
/*
* head->next either points to the first element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular.
*
* head->prev either points to the last element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular.
*/
dlist_node head;
} dlist_head;
/*
* Doubly linked list iterator.
*
* Used as state in dlist_foreach() and dlist_reverse_foreach(). To get the
* current element of the iteration use the 'cur' member.
*
* Iterations using this are *not* allowed to change the list while iterating!
*
* NB: We use an extra type for this to make it possible to avoid multiple
* evaluations of arguments in the dlist_foreach() macro.
*/
typedef struct dlist_iter
{
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */
} dlist_iter;
/*
* Doubly linked list iterator allowing some modifications while iterating
*
* Used as state in dlist_foreach_modify(). To get the current element of the
* iteration use the 'cur' member.
*
* Iterations using this are only allowed to change the list at the current
* point of iteration. It is fine to delete the current node, but it is *not*
* fine to modify other nodes.
*
* NB: We need a separate type for mutable iterations to avoid having to pass
* in two iterators or some other state variable as we need to store the
* '->next' node of the current node so it can be deleted or modified by the
* user.
*/
typedef struct dlist_mutable_iter
{
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */
dlist_node *next; /* next node we iterate to, so we can delete
* cur */
} dlist_mutable_iter;
/*
* Node of a singly linked list.
*
* Embed this in structs that need to be part of a singly linked list.
*/
typedef struct slist_node slist_node;
struct slist_node
{
slist_node *next;
};
/*
* Head of a singly linked list.
*
* Singly linked lists are not circularly linked, in contrast to doubly linked
* lists. As no pointer to the last list element and to the previous node needs
* to be maintained this doesn't incur any additional branches in the usual
* manipulations.
*/
typedef struct slist_head
{
slist_node head;
} slist_head;
/*
* Singly linked list iterator
*
* Used in slist_foreach(). To get the current element of the iteration use the
* 'cur' member.
*
* Do *not* manipulate the list while iterating!
*
* NB: this wouldn't really need to be an extra struct, we could use a
* slist_node * directly. We still use a separate type for consistency.
*/
typedef struct slist_iter
{
slist_node *cur;
} slist_iter;
/*
* Singly linked list iterator allowing some modifications while iterating
*
* Used in slist_foreach_modify.
*
* Iterations using this are allowed to remove the current node and to add more
* nodes to the beginning of the list.
*/
typedef struct slist_mutable_iter
{
slist_node *cur;
slist_node *next;
} slist_mutable_iter;
/* Prototypes for functions too big to be inline */
/* Attention: O(n) */
extern void slist_delete(slist_head *head, slist_node *node);
#ifdef ILIST_DEBUG
extern void dlist_check(dlist_head *head);
extern void slist_check(slist_head *head);
#else
/*
* These seemingly useless casts to void are here to keep the compiler quiet
* about the argument being unused in many functions in a non-debug compile,
* in which functions the only point of passing the list head pointer is to be
* able to run these checks.
*/
#define dlist_check(head) (void) (head)
#define slist_check(head) (void) (head)
#endif /* ILIST_DEBUG */
/* Static initializers */
#define DLIST_STATIC_INIT(name) {{&name.head, &name.head}}
#define SLIST_STATIC_INIT(name) {{NULL}}
/*
* We want the functions below to be inline; but if the compiler doesn't
* support that, fall back on providing them as regular functions. See
* STATIC_IF_INLINE in c.h.
*/
#ifndef PG_USE_INLINE
extern void dlist_init(dlist_head *head);
extern bool dlist_is_empty(dlist_head *head);
extern void dlist_push_head(dlist_head *head, dlist_node *node);
extern void dlist_push_tail(dlist_head *head, dlist_node *node);
extern void dlist_insert_after(dlist_head *head,
dlist_node *after, dlist_node *node);
extern void dlist_insert_before(dlist_head *head,
dlist_node *before, dlist_node *node);
extern void dlist_delete(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_pop_head_node(dlist_head *head);
extern void dlist_move_head(dlist_head *head, dlist_node *node);
extern bool dlist_has_next(dlist_head *head, dlist_node *node);
extern bool dlist_has_prev(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_next_node(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_prev_node(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_head_node(dlist_head *head);
extern dlist_node *dlist_tail_node(dlist_head *head);
/* dlist macro support functions */
extern void *dlist_tail_element_off(dlist_head *head, size_t off);
extern void *dlist_head_element_off(dlist_head *head, size_t off);
#endif /* !PG_USE_INLINE */
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/*
* Initialize the head of a list. Previous state will be thrown away without
* any cleanup.
*/
STATIC_IF_INLINE void
dlist_init(dlist_head *head)
{
head->head.next = head->head.prev = &head->head;
dlist_check(head);
}
/*
* Insert a node at the beginning of the list.
*/
STATIC_IF_INLINE void
dlist_push_head(dlist_head *head, dlist_node *node)
{
if (head->head.next == NULL)
dlist_init(head);
node->next = head->head.next;
node->prev = &head->head;
node->next->prev = node;
head->head.next = node;
dlist_check(head);
}
/*
* Inserts a node at the end of the list.
*/
STATIC_IF_INLINE void
dlist_push_tail(dlist_head *head, dlist_node *node)
{
if (head->head.next == NULL)
dlist_init(head);
node->next = &head->head;
node->prev = head->head.prev;
node->prev->next = node;
head->head.prev = node;
dlist_check(head);
}
/*
* Insert a node after another *in the same list*
*/
STATIC_IF_INLINE void
dlist_insert_after(dlist_head *head, dlist_node *after, dlist_node *node)
{
dlist_check(head);
/* XXX: assert 'after' is in 'head'? */
node->prev = after;
node->next = after->next;
after->next = node;
node->next->prev = node;
dlist_check(head);
}
/*
* Insert a node before another *in the same list*
*/
STATIC_IF_INLINE void
dlist_insert_before(dlist_head *head, dlist_node *before, dlist_node *node)
{
dlist_check(head);
/* XXX: assert 'before' is in 'head'? */
node->prev = before->prev;
node->next = before;
before->prev = node;
node->prev->next = node;
dlist_check(head);
}
/*
* Delete 'node' from list.
*
* It is not allowed to delete a 'node' which is is not in the list 'head'
*/
STATIC_IF_INLINE void
dlist_delete(dlist_head *head, dlist_node *node)
{
dlist_check(head);
node->prev->next = node->next;
node->next->prev = node->prev;
dlist_check(head);
}
/*
* Delete and return the first node from a list.
*
* Undefined behaviour when the list is empty. Check with dlist_is_empty if
* necessary.
*/
STATIC_IF_INLINE dlist_node *
dlist_pop_head_node(dlist_head *head)
{
dlist_node *ret;
Assert(&head->head != head->head.next);
ret = head->head.next;
dlist_delete(head, head->head.next);
return ret;
}
/*
* Move element from its current position in the list to the head position in
* the same list.
*
* Undefined behaviour if 'node' is not already part of the list.
*/
STATIC_IF_INLINE void
dlist_move_head(dlist_head *head, dlist_node *node)
{
/* fast path if it's already at the head */
if (head->head.next == node)
return;
dlist_delete(head, node);
dlist_push_head(head, node);
dlist_check(head);
}
/*
* Check whether the passed node is the last element in the list.
*/
STATIC_IF_INLINE bool
dlist_has_next(dlist_head *head, dlist_node *node)
{
return node->next != &head->head;
}
/*
* Check whether the passed node is the first element in the list.
*/
STATIC_IF_INLINE bool
dlist_has_prev(dlist_head *head, dlist_node *node)
{
return node->prev != &head->head;
}
/*
* Return the next node in the list.
*
* Undefined behaviour when no next node exists. Use dlist_has_next to make
* sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_next_node(dlist_head *head, dlist_node *node)
{
Assert(dlist_has_next(head, node));
return node->next;
}
/*
* Return previous node in the list.
*
* Undefined behaviour when no prev node exists. Use dlist_has_prev to make
* sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_prev_node(dlist_head *head, dlist_node *node)
{
Assert(dlist_has_prev(head, node));
return node->prev;
}
/*
* Return whether the list is empty.
*
* An empty list has either its first 'next' pointer set to NULL, or to itself.
*/
STATIC_IF_INLINE bool
dlist_is_empty(dlist_head *head)
{
dlist_check(head);
return head->head.next == NULL || head->head.next == &(head->head);
}
/* internal support function */
STATIC_IF_INLINE void *
dlist_head_element_off(dlist_head *head, size_t off)
{
Assert(!dlist_is_empty(head));
return (char *) head->head.next - off;
}
/*
* Return the first node in the list.
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_head_node(dlist_head *head)
{
return dlist_head_element_off(head, 0);
}
/* internal support function */
STATIC_IF_INLINE void *
dlist_tail_element_off(dlist_head *head, size_t off)
{
Assert(!dlist_is_empty(head));
return (char *) head->head.prev - off;
}
/*
* Return the last node in the list.
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_tail_node(dlist_head *head)
{
return dlist_tail_element_off(head, 0);
}
#endif /* PG_USE_INLINE || ILIST_INCLUDE_DEFINITIONS */
/*
* Return the containing struct of 'type' where 'membername' is the dlist_node
* pointed at by 'ptr'.
*
* This is used to convert a dlist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, dlist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)((char *)(ptr) - offsetof(type, membername))))
/*
* Return the value of first element in the list.
*
* The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_head_element(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_head_element_off(ptr, offsetof(type, membername))))
/*
* Return the value of first element in the list.
*
* The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_tail_element(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_tail_element_off(ptr, offsetof(type, membername))))
/*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'.
*
* Access the current element with iter.cur.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define dlist_foreach(iter, ptr) \
AssertVariableIsOfType(iter, dlist_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end; \
iter.cur != iter.end; \
iter.cur = iter.cur->next)
/*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'.
*
* Access the current element with iter.cur.
*
* It is allowed to delete the current element from the list. Every other
* manipulation can lead to corruption.
*/
#define dlist_foreach_modify(iter, ptr) \
AssertVariableIsOfType(iter, dlist_mutable_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end, \
iter.next = iter.cur->next; \
iter.cur != iter.end; \
iter.cur = iter.next, iter.next = iter.cur->next)
/*
* Iterate through the list in reverse order.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define dlist_reverse_foreach(iter, ptr) \
AssertVariableIsOfType(iter, dlist_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->prev ? iter.end->prev : iter.end; \
iter.cur != iter.end; \
iter.cur = iter.cur->prev)
/*
* We want the functions below to be inline; but if the compiler doesn't
* support that, fall back on providing them as regular functions. See
* STATIC_IF_INLINE in c.h.
*/
#ifndef PG_USE_INLINE
extern void slist_init(slist_head *head);
extern bool slist_is_empty(slist_head *head);
extern slist_node *slist_head_node(slist_head *head);
extern void slist_push_head(slist_head *head, slist_node *node);
extern slist_node *slist_pop_head_node(slist_head *head);
extern void slist_insert_after(slist_head *head,
slist_node *after, slist_node *node);
extern bool slist_has_next(slist_head *head, slist_node *node);
extern slist_node *slist_next_node(slist_head *head, slist_node *node);
/* slist macro support function */
extern void *slist_head_element_off(slist_head *head, size_t off);
#endif
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/*
* Initialize a singly linked list.
*/
STATIC_IF_INLINE void
slist_init(slist_head *head)
{
head->head.next = NULL;
slist_check(head);
}
/*
* Is the list empty?
*/
STATIC_IF_INLINE bool
slist_is_empty(slist_head *head)
{
slist_check(head);
return head->head.next == NULL;
}
/* internal support function */
STATIC_IF_INLINE void *
slist_head_element_off(slist_head *head, size_t off)
{
Assert(!slist_is_empty(head));
return (char *) head->head.next - off;
}
/*
* Push 'node' as the new first node in the list, pushing the original head to
* the second position.
*/
STATIC_IF_INLINE void
slist_push_head(slist_head *head, slist_node *node)
{
node->next = head->head.next;
head->head.next = node;
slist_check(head);
}
/*
* Remove and return the first node in the list
*
* Undefined behaviour if the list is empty.
*/
STATIC_IF_INLINE slist_node *
slist_pop_head_node(slist_head *head)
{
slist_node *node;
Assert(!slist_is_empty(head));
node = head->head.next;
head->head.next = head->head.next->next;
slist_check(head);
return node;
}
/*
* Insert a new node after another one
*
* Undefined behaviour if 'after' is not part of the list already.
*/
STATIC_IF_INLINE void
slist_insert_after(slist_head *head, slist_node *after,
slist_node *node)
{
node->next = after->next;
after->next = node;
slist_check(head);
}
/*
* Return whether 'node' has a following node
*/
STATIC_IF_INLINE bool
slist_has_next(slist_head *head,
slist_node *node)
{
slist_check(head);
return node->next != NULL;
}
#endif /* PG_USE_INLINE || ILIST_INCLUDE_DEFINITIONS */
/*
* Return the containing struct of 'type' where 'membername' is the slist_node
* pointed at by 'ptr'.
*
* This is used to convert a slist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define slist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, slist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
((type *)((char *)(ptr) - offsetof(type, membername))))
/*
* Return the value of first element in the list.
*/
#define slist_head_element(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
slist_head_element_off(ptr, offsetoff(type, membername)))
/*
* Iterate through the list 'ptr' using the iterator 'iter'.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define slist_foreach(iter, ptr) \
AssertVariableIsOfType(iter, slist_iter); \
AssertVariableIsOfType(ptr, slist_head *); \
for (iter.cur = (ptr)->head.next; \
iter.cur != NULL; \
iter.cur = iter.cur->next)
/*
* Iterate through the list 'ptr' using the iterator 'iter' allowing some
* modifications.
*
* It is allowed to delete the current element from the list and add new nodes
* before the current position. Other manipulations can lead to corruption.
*/
#define slist_foreach_modify(iter, ptr) \
AssertVariableIsOfType(iter, slist_mutable_iter); \
AssertVariableIsOfType(ptr, slist_head *); \
for (iter.cur = (ptr)->head.next, \
iter.next = iter.cur ? iter.cur->next : NULL; \
iter.cur != NULL; \
iter.cur = iter.next, \
iter.next = iter.next ? iter.next->next : NULL)
#endif /* ILIST_H */
|