Skip to content

aertslab/TF-MINDI

Repository files navigation

TF-MINDI: Transcription Factor Motif Instance Neighborhood Decomposition and Interpretation

Tests Documentation

TF-MINDI is a Python package for analyzing transcription factor binding patterns from deep learning model attribution scores. It identifies and clusters sequence motifs from contribution scores, maps them to DNA-binding domains, and provides comprehensive visualization tools for regulatory genomics analysis.

Getting Started

Please refer to the documentation for detailed tutorials and examples, in particular, the API documentation and Tutorials

Key Features

  • Seqlet Extraction: Identifies important sequence regions from contribution scores using recursive seqlet calling from tangermeme
  • Motif Similarity Analysis: Compares extracted seqlets to known motif databases using TomTom
  • Clustering & Dimensionality Reduction: Groups similar seqlets using Leiden clustering and t-SNE visualization
  • DNA-Binding Domain Annotation: Maps seqlet clusters to transcription factor families
  • Pattern Generation: Creates consensus motifs from clustered seqlets with alignment
  • Comprehensive Visualization: Region-level contribution plots, t-SNE embeddings, motif logos, and heatmaps

Installation

tfmindi is compatible with python version 3.10-3.12.

CPU Version (Default)

pip install tfmindi

GPU-Accelerated Version (Recommended for large datasets)

# Requires CUDA-compatible GPU (CUDA 12.X)
pip install tfmindi[gpu]

The GPU version provides significant speedups for:

  • PCA computation
  • Neighborhood graph construction
  • t-SNE embedding
  • Leiden clustering

We're still working on making the tfmindi package as GPU-compatible as possible. If tfmindi can't find the GPU, try importing rapids_singlecell directly in python and see what errors you get. You might have to explicitly set your LD_LIBRARY_PATH for cuml as described here.

Quick Start

TF-MINDI follows a scanpy-inspired workflow:

  1. Preprocessing (tm.pp): Extract seqlets, calculate motif similarities, and create an Anndata object
  2. Tools (tm.tl): Cluster seqlets and create consensus patterns
  3. Plotting (tm.pl): Visualize results
import tfmindi as tm

# Optional: Check GPU availability and set backend
print(f"GPU available: {tm.is_gpu_available()}")
print(f"Current backend: {tm.get_backend()}")
# tm.set_backend('gpu')  # Force GPU backend
# tm.set_backend('cpu')  # Swap back to CPU backend

# Extract seqlets from contribution scores
seqlets_df, seqlet_matrices = tm.pp.extract_seqlets(
    contrib=contrib_scores,  # (n_examples, 4, length)
    oh=one_hot_sequences,    # (n_examples, 4, length)
    threshold=0.05
)

# Calculate motif similarity
motif_collection = tm.load_motif_collection(
    tm.fetch_motif_collection()
)
similarity_matrix = tm.pp.calculate_motif_similarity(
    seqlet_matrices,
    motif_collection,
    chunk_size=10000
)

# Create AnnData object for analysis
adata = tm.pp.create_seqlet_adata(
    similarity_matrix,
    seqlets_df,
    seqlet_matrices=seqlet_matrices,
    oh_sequences=one_hot_sequences,
    contrib_scores=contrib_scores,
    motif_collection=motif_collection
)

# Cluster seqlets and annotate with DNA-binding domains
tm.tl.cluster_seqlets(adata, resolution=3.0)

# Generate consensus logos for each cluster
patterns = tm.tl.create_patterns(adata)

# Visualize results
tm.pl.tsne(adata, color_by="cluster_dbd")
tm.pl.region_contributions(adata, example_idx=0)
tm.pl.dbd_heatmap(adata)

Release Notes

See the changelog.

Contact

If you found a bug, please use the issue tracker.

Citation

t.b.a

About

Transcription Factor Motif Instance Neighborhood Decomposition and Interpretation

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages