Skip to content

altriavin/MutDTA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MutDTA: Interpretable Transfer Learning for Predicting Mutation Effects on Drug Binding Affinity in Viral Proteins

This repository contains the MutDTA deep learning model, which is a transfer learning model designed to predict the impact of mutations on DTA and to elucidate resistance mechanisms effectively. The model is implemented in python and pytorch for accurate affinity predictions.

Requirements

torch 1.8.0
python 3.8.18
numpy 1.22.0
pandas 1.3.1
scikit-learn 0.24.0
scipy 1.10.1

All datasets of our preprocessing data:

dataset url
pre-training dataset/Kd.csv
fine-tuning dataset/platinum.csv
code start dataset dataset/cold_start

Usage

  1. Train and test on the demo data
python main.py --dataset <data_name> --learn_rate <learn_rate> --epochs <epochs> --batch_size <batch_size>

For example:

python main.py --dataset platinum --learn_rate 0.00001 --epochs 100 --batch_size 128
  1. Train and test on your own data

If you want to run MutDTA on your data, just preprocess your data into the specified form as follows:

smile seq labels
drug_smile protein_seq -log($\frac{affinity}{1e9}$)

and then, you can use MutDTA to train or test your data using the following command:

python main.py --dataset <your_dataset_name> --learn_rate 0.00001 --epochs 100 --batch_size 128

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages