Skip to content

AI for Science 论文解读合集(持续更新ing),论文/数据集/教程下载:hyper.ai

License

Notifications You must be signed in to change notification settings

altriavin/awesome-ai4s

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 

Repository files navigation

Awesome AI for Science

前言

从 2020 年开始,以 AlphaFold 为代表的科研项目将 AI for Science (AI4S) 推向了 AI 应用的主舞台。近年来,从生物医药到天文气象、再到材料化学等基础学科,都成为了 AI 的新战场。

随着越来越多的交叉学科人才开始在其研究领域应用机器学习、深度学习等技术进行数据处理、构建模型,加之跨学科研究团队的合作日益加强,AI4S 的能力被更多科研人员所关注到,但却未达到规模化应用的目标。提高相关研究的可复用性、降低技术门槛、提高数据质量等诸多问题亟待解决。

目前,除了高校、科研机构在积极探索 AI4S 外,多国政府及头部科技企业也都关注到了 AI 革新科研的潜力,并进行了相关的政策疏导与布局,可以说 AI4S 已经是大势所趋。

作为最早一批关注到 AI for Science 的社区,「HyperAI超神经」在陪伴行业成长的同时,也乐于将最新的研究进展与成果进行普适化分享,我们希望通过解读前沿论文与政策的方式,令更多团队看到 AI 对于科研的帮助,为 AI for Science 的发展贡献力量。

目前,HyperAI超神经已经解读分享了近 200 篇论文,为了便于大家检索,我们将文章根据学科进行分类,并展示了发表期刊及时间,提取了关键词(研究团队、相关研究、数据集等),大家可以点击题目跳转论文中文解读页面(内含完整论文下载链接)。

本文档将以开源项目的形式呈现,我们将持续更新解读文章,同时也欢迎大家投稿优秀研究成果,如果您所在的团队/课题组有报道需求,可添加微信:神经星星(微信号:Hyperai01)。

AI+ 生物医药:AI+Biopharmaceutical

  • 中文解读: https://hyper.ai/news/32623

  • 科研团队: 清华大学自动化系生命基础模型实验室主任张学工教授、电子系/AIR 马剑竹教授和百图生科宋乐博士

  • 相关研究: 人工智能细胞大模型、人类单细胞组学数据 DISCO,欧洲分子生物学实验室-欧洲生物信息学研究所数据库 EMBL-EBI、GEO 数据集,Single Cell Portal 数据集,HCA 数据集,hECA 数据集、Transformer、非对称的编码器-解码器结构、向量模块、RDA 建模

  • 发布期刊: Nature Methods, 2024.06

  • 论文链接: Large-scale foundation model on single-cell transcriptomics

  • 中文解读: https://hyper.ai/cn/news/34954

  • 科研团队: 浙江大学计算机科学与技术学院、浙江大学国际联合学院、浙江大学杭州国际科创中心陈华钧教授、张强博士

  • 相关研究: 去噪蛋白质语言模型 (DePLM)、ProteinGym 深度突变筛选 (DMS) 实验集合、DMS 数据集、随机交叉验证方法、泛化能力实验、基于排序信息的前向过程来扩展扩散模型以去噪进化信息、基于排序的去噪扩散过程、排序算法 (sorting algorithm) 生成轨迹、PromptProtein 模型

  • 发布期刊: NeurIPS 2024, 2024.11

  • 论文链接: DePLM: Denoising Protein Language Models for Property Optimization

  • 中文解读: https://hyper.ai/cn/news/35781

  • 科研团队: 西湖大学未来产业研究中心团队

  • 相关研究: CATH4.3 数据集、ESM2 模型、CASP15 数据集、新晶体结构、NovelPro 数据集、RDesign 收集的数据集、CHILI-3K 数据集、基于氨基酸和核苷酸的预定义框架、GNN、几何特征提取器 (Geometric Featurizer) 、块图注意力层 (Block Graph Attention)。在蛋白质设计、 RNA 设计、材料设计上都优于其他对比的先进方法

  • 发布期刊: NeurIPS 2024, 2024.5

  • 论文链接: UniIF: Unified Molecule Inverse Folding

  • 中文解读: https://hyper.ai/cn/news/35874

  • 科研团队: 海交通大学自然科学研究院/物理天文学院/张江高研院/药学院洪亮教授课题组,上海交大助理研究员周冰心,联合上海人工智能实验室青年研究员谈攀

  • 相关研究: 预训练蛋白质语言模型 ProSST、Transformer、解耦注意力机制、蛋白质结构量化器、AlphaFoldDB 数据集、CATH43-S40 数据集、CATH43-S40 局部结构数据集、ProteinGYM 基准数据集。在热稳定性预测、金属离子结合预测、蛋白质定位预测、 GO 注释预测等任务中优于现有模型

  • 发布期刊: NeurIPS 2024, 2024.05

  • 论文链接: ProSST: Protein Language Modeling with Quantized Structure and Disentangled Attention

AI+ 医疗健康:AI+Healthcare

  • 中文解读: https://hyper.ai/news/33292

  • 科研团队: 清华大学副教务长、医学院主任黄天荫教授团队,上海交通大学电院计算机系/教育部人工智能重点实验室盛斌教授团队,上海交通大学医学院附属第六人民医院贾伟平教授及李华婷教授团队,新加坡国立大学及新加坡国家眼科中心覃宇宗教授团队

  • 相关研究: 大语言模型、基于眼底图像的深度学习技术、融合适配器 (Adaptor) 和低秩自适应、Transformer 模型架构、监督微调方法、可提高基层 DR 筛查能力和糖尿病诊疗水平

  • 发布期刊: Nature Medicine, 2024.07

  • 论文链接: Integrated image-based deep learning and language models for primary diabetes care

AI+ 材料化学:AI+Materials Chemistry

AI+动植物科学:AI+Zoology-Botany

  • 中文解读: https://hyper.ai/news/33931

  • 主要内容: AI 在同源搜索、多重比对及系统发育构建、基因组序列分析、基因发现等生物学领域中,都有丰富的应用案例。作为一名生物学研究人员,能熟练地将机器学习工具整合到数据分析中,必将加速科学发现、提升科研效率。

AI+农林畜牧业:AI+Agriculture-Forestry-Animal husbandry

AI+ 气象学:AI+Meteorology

  • 中文解读: https://hyper.ai/news/28124

  • 主要内容: 数值天气预报是天气预报的主流方法。它通过数值积分,对地球系统的状态进行逐网格的求解,是一个演绎推理的过程。 2022 年以来,天气预报领域的机器学习模型取得了一系列突破,部分成果可以与欧洲中期天气预报中心的高精度预测匹敌。

  • 中文解读: https://hyper.ai/news/25874

  • 主要内容: 2021 年,达摩院与国家气象中心联合研发了 AI 算法用于天气预测,并成功预测了多次强对流天气。同年 9 月,Deepmind 在《Nature》上发表文章,利用深度生成模型进行降雨量的实时预报。

2023 年年初,Deepmind 正式推出了 GraphCast,可以在一分钟内对全球未来 10 天的气象,进行分辨率为 0.25° 的预测。 4 月,南京信息工程大学和上海人工智能实验室合作研发了「风乌」气象预测大模型,误差较 GraphCast 进一步降低。

随后,华为推出了「盘古」气象大模型。由于模型中引出了三维神经网络,「盘古」的预测准确率首次超过了目前最准确的 NWP 预测系统。近期,清华大学和复旦大学相继发布了「NowCastNet」和「伏羲」模型。

AI+ 天文学:AI+Astronomy

AI+ 自然灾害:AI+Natural Disaster

AI4S 政策解读:AI4S Policy

其他:Others

  • 中文解读: https://hyper.ai/news/31499

  • 主要内容: 斯坦福大学 HAI 研究中心发布《2024 年人工智能指数报告》。这份报告全面追踪了 2023 年全球人工智能的发展趋势。还探讨人工智能在科学和医学领域的深远影响。报告中展示了 2023 年 AI 在科学领域的辉煌成就,以及 AI 在医疗领域取得的重要创新成果,包括 SynthSR 和 ImmunoSEIRA 等突破性技术。此外,还分析了 FDA 对 AI 医疗设备审批的趋势,为行业提供了宝贵的参考。

About

AI for Science 论文解读合集(持续更新ing),论文/数据集/教程下载:hyper.ai

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published