A Retrieval-Augmented Generation (RAG) system that provides intelligent answers about automotive topics using Wikipedia data and Google Gemini AI.
- AI-Powered Responses: Uses Google Gemini AI for intelligent automotive Q&A
- Wikipedia Integration: Retrieves real-time information from Wikipedia
- Automotive Focus: Specialized for car brands, models, and automotive technology
- Interactive Chat: Streamlit-based conversational interface
- Smart Caching: Optimized performance with intelligent caching
- Query Normalization: Handles various automotive company aliases
pip install -r requirements.txtCreate a .env file in the project root:
# .env
GEMINI_API_KEY=your_gemini_api_key_hereGet your Gemini API key:
- Visit Google AI Studio
- Create a new API key
- Copy the key to your
.envfile
streamlit run app.pyThe application will be available at http://localhost:8501
- "When was Tesla founded?"
- "Tell me about Toyota Prius"
- "What is the Ford Mustang history?"
- "BMW M3 specifications"
The system recognizes common aliases for major automotive brands:
- Tesla, BMW, Mercedes-Benz, Audi, Volkswagen
- Toyota, Honda, Ford, Chevrolet, Nissan
- Hyundai, Kia, Mazda, Subaru, Lexus
- And many more...
app.py: Main Streamlit application with UIlogic/wiki_utils.py: Wikipedia data retrieval and parsinglogic/gemini_utils.py: Google Gemini AI integrationlogic/__init__.py: Module exports
Required:
GEMINI_API_KEY: Your Google Gemini API key
RAG_miniproj/
├── app.py # Main Streamlit application
├── logic/
│ ├── __init__.py # Module exports
│ ├── wiki_utils.py # Wikipedia integration
│ └── gemini_utils.py # Gemini AI integration
├── requirements.txt # Python dependencies
├── Dockerfile # Docker configuration
└── README.md # This file