Skip to content

magic524/SO-Det

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 

Repository files navigation

SO-Det: A Cross-Layer Weighted Architecture with Channel-Optimized Downsampling and Enhanced Attention Fusion of Small Object Detector

Framework

Paper License

Official implementation of SO-Det, a novel architecture for small object detection featuring:

  • Cross-Layer Weighted Architecture (CLWA)
  • Channel-Optimized Downsampling (CDown)
  • Enhanced Attention Fusion (EAFusion)

A full runnable version will be released when the paper is published

Abstract

--

Models

Detection (VisDrone)

See VisDrone Dataset for details about this 10-class dataset.

Model size
(pixels)
mAPval
50
mAPval
50-95
Precision Recall Params
(M)
FLOPs
(B)
SO-Det-s 640 40.2 23.7 49.9 38.9 1.1 16.3
SO-Det-m 640 46.8 28.0 53.7 46.2 3.5 50.2
SO-Det-l 640 51.7 32.0 59.6 50.0 13.1 182.1
  • Metrics measured on VisDrone val set with input resolution 640x640.
  • Reproduce by python val.py --data visdrone.yaml --weights so-det-s.pt --img 640
Detection (TinyPerson)

See TinyPerson Dataset for details.

Model size
(pixels)
mAPval
50
mAPval
50-95
Precision Recall Params
(M)
FLOPs
(B)
SO-Det-s 640 19.3 6.3 32.6 26.0 1.1 16.3
SO-Det-m 640 24.7 7.7 37.4 28.8 3.5 50.2
SO-Det-l 640 26.1 8.3 41.5 30.6 13.1 182.1
  • Metrics measured on TinyPerson val set with input resolution 640x640.
  • Reproduce by python val.py --data tinyperson.yaml --weights so-det-s.pt --img 640

Dataset

--

Installation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages