class AIEngineer:
def __init__(self):
self.skills = {
# 深度学习
"deep_learning": {
"frameworks": ["PyTorch", "TensorFlow", "Keras"],
"model_architectures": ["CNN", "RNN", “LSTM”, "Transformer", "BERT"],
"training_optimization": ["混合精度训练", "梯度累积", "学习率调度策略"],
"distributed_training": ["DeepSpeed", "Hadoop", "Spark"],
"model_compression": ["量化(INT8/FP16)", "剪枝", "知识蒸馏"]
},
"learning_strategy": {
"learning_paradigms": [
"零样本学习(Zero-shot)",
"少样本学习(Few-shot)",
"半监督学习",
"弱监督学习",
],
"advanced_techniques": [
"检索增强生成(RAG)",
"提示工程",
"模型微调策略",
"多模态学习"
]
},
# 全栈开发
"fullstack_development": {
"frontend": ["Vue", "Node.js", "TypeScript"],
"backend": ["FastAPI", "SpringBoot"],
"databases": ["MySQL", "Redis", "SQLite", "SQL Server"],
"devops": ["Docker", "Linux", "Nginx"]
},
# 编程语言
"programming_languages": {
"primary": ["Python", "C", "C++", "Java"],
"secondary": ["SQL", "Shell", "HTML", "CSS"]
}
}
def get_tech_stack(self):
"""返回完整技术栈"""
stack = []
for category, skills in self.skills.items():
for subcategory, items in skills.items():
stack.extend(items)
return stack
def describe_experience(self):
return {
"ai_engineering": "具备从模型设计、训练优化到生产部署的完整工程能力",
"large_scale_training": "拥有大规模模型分布式训练实战经验",
"model_compression": "精通模型压缩技术,实现资源受限场景高效部署",
"fullstack_delivery": "具备完整的Web应用及小程序开发交付能力"
}
# 实例化
engineer = AIEngineer()
print("🎯 技术专长:", engineer.describe_experience())
print("🚀 技术栈:", engineer.get_tech_stack())🤖 深度学习
🔬 学习算法
💻 全栈开发
🗄️ 操作系统与数据库
- 大模型微调: 使用DeepSpeed和分布式策略完成参数过亿大模型的微调
- 模型部署: 通过量化和剪枝技术,在资源受限设备实现模型高效推理
- RAG系统构建: 设计并实现检索增强生成系统,提升LLM应用效果,减少幻觉
- 前后端开发: 从算法设计到前后端开发,将模型封装为能够可视化使用的系统
- 性能优化: 数据库优化、缓存策略、模型推理加速等系统性调优
