| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Vector.Bit
Synopsis
- data Vector (a :: Nat) (b :: TYPE R) where
- data Vector# (a :: Nat) (b :: TYPE R) :: UnliftedType
- data MutableVector a (b :: Nat) (c :: TYPE R) where
- MutableVector :: forall a (b :: Nat) (c :: TYPE R). MutableVector# a b c -> MutableVector a b c
- data MutableVector# a (b :: Nat) (c :: TYPE R) :: UnliftedType
- data Bounded (a :: Nat) (b :: TYPE R) where
- write# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> a -> State# s -> State# s
- write :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> Fin# n -> a -> ST s ()
- read :: forall s (n :: Nat). MutableVector s n Bool# -> Fin# n -> ST s Bool
- read# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> State# s -> (# State# s, a #)
- index# :: forall (n :: Nat) (a :: TYPE R). Vector# n a -> Fin# n -> a
- index :: forall (n :: Nat) (a :: TYPE R). Vector n a -> Fin# n -> a
- unlift :: forall (n :: Nat) (a :: TYPE R). Vector n a -> Vector# n a
- substitute :: forall (m :: Nat) (n :: Nat) (a :: TYPE R). (m :=:# n) -> Vector m a -> Vector n a
- substitute# :: forall (m :: Nat) (n :: Nat) (a :: TYPE R). (m :=:# n) -> Vector# m a -> Vector# n a
- initialized :: forall s (n :: Nat) (a :: TYPE R). Nat# n -> a -> ST s (MutableVector s n a)
- initialized# :: forall s (n :: Nat) (a :: TYPE R). Nat# n -> a -> State# s -> (# State# s, MutableVector# s n a #)
- unsafeCoerceLength :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat n -> Vector m a -> Vector n a
- expose :: forall (n :: Nat) (a :: TYPE R). Vector n a -> A# a
- expose# :: forall (n :: Nat) (a :: TYPE R). Vector# n a -> A# a
- set :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> Nat# n -> a -> ST s ()
- setSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s n a -> Nat# i -> Nat# m -> a -> ST s ()
- unsafeShrinkFreeze :: forall s (n0 :: Nat) (n1 :: Nat) (a :: TYPE R). (n1 <=# n0) -> MutableVector s n0 a -> Nat# n1 -> ST s (Vector n1 a)
- unsafeFreeze :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> ST s (Vector n a)
- freeze :: forall (n :: Nat) s (a :: TYPE R). Nat# n -> MutableVector s n a -> ST s (Vector n a)
- freezeSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s (Vector n a)
- freeze# :: forall (n :: Nat) s (a :: TYPE R). Nat# n -> MutableVector# s n a -> State# s -> (# State# s, Vector# n a #)
- freezeSlice# :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector# s m a -> Nat# i -> Nat# n -> State# s -> (# State# s, Vector# n a #)
- thaw :: forall (n :: Nat) (a :: TYPE R) s. Nat# n -> Vector n a -> ST s (MutableVector s n a)
- map :: forall (a :: TYPE R) (n :: Nat). (a -> a) -> Vector n a -> Nat# n -> Vector n a
- traverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (a -> m b) -> Nat# n -> Vector n a -> m ()
- itraverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector n a -> m ()
- itraverse_# :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector# n a -> m ()
- traverseST# :: forall (n :: Nat) s (a :: TYPE R) (b :: TYPE R). (a -> State# s -> (# State# s, b #)) -> Nat# n -> Vector# n a -> State# s -> (# State# s, Vector# n b #)
- ifoldl' :: forall (n :: Nat) (a :: TYPE R) b. (b -> Fin# n -> a -> b) -> b -> Nat# n -> Vector n a -> b
- ifoldlSlice' :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R) b. ((i + n) <= m) -> (b -> Fin# (i + n) -> a -> b) -> b -> Vector m a -> Nat# i -> Nat# n -> b
- construct1 :: forall (a :: TYPE R). a -> Vector 1 a
- construct2 :: forall (a :: TYPE R). a -> a -> Vector 2 a
- construct3 :: forall (a :: TYPE R). a -> a -> a -> Vector 3 a
- construct4 :: forall (a :: TYPE R). a -> a -> a -> a -> Vector 4 a
- construct5 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> Vector 5 a
- replicate :: forall (n :: Nat) (a :: TYPE R). Nat# n -> a -> Vector n a
- empty :: forall (a :: TYPE R). Vector 0 a
- empty_ :: forall (a :: TYPE R). Vector_ a
- empty# :: forall (a :: TYPE R). (# #) -> Vector# 0 a
- append :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat# n -> Nat# m -> Vector n a -> Vector m a -> Vector (n + m) a
- clone :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Vector n a
- cloneSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R). ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a
- index0 :: forall (n :: Natural) (a :: TYPE R). CmpNat 0 n ~ 'LT => Vector n a -> a
- index1 :: forall (n :: Natural) (a :: TYPE R). CmpNat 1 n ~ 'LT => Vector n a -> a
- index2 :: forall (n :: Natural) (a :: TYPE R). CmpNat 2 n ~ 'LT => Vector n a -> a
- index3 :: forall (n :: Natural) (a :: TYPE R). CmpNat 3 n ~ 'LT => Vector n a -> a
- equals :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Vector n a -> Bool
- zipAnd :: forall (n :: Nat). Nat# n -> Vector n Bool# -> Vector n Bool# -> Vector n Bool#
- zipOr :: forall (n :: Nat). Nat# n -> Vector n Bool# -> Vector n Bool# -> Vector n Bool#
- allEqTrue :: forall (n :: Nat). Nat# n -> Vector n Bool# -> Bool
Documentation
data Vector# (a :: Nat) (b :: TYPE R) :: UnliftedType #
data MutableVector a (b :: Nat) (c :: TYPE R) where #
Constructors
| MutableVector :: forall a (b :: Nat) (c :: TYPE R). MutableVector# a b c -> MutableVector a b c |
data MutableVector# a (b :: Nat) (c :: TYPE R) :: UnliftedType #
Primitives
write# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> a -> State# s -> State# s #
read# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> State# s -> (# State# s, a #) #
substitute# :: forall (m :: Nat) (n :: Nat) (a :: TYPE R). (m :=:# n) -> Vector# m a -> Vector# n a #
initialized :: forall s (n :: Nat) (a :: TYPE R). Nat# n -> a -> ST s (MutableVector s n a) #
initialized# :: forall s (n :: Nat) (a :: TYPE R). Nat# n -> a -> State# s -> (# State# s, MutableVector# s n a #) #
unsafeCoerceLength :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat n -> Vector m a -> Vector n a #
Ranges
setSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s n a -> Nat# i -> Nat# m -> a -> ST s () #
Freeze
unsafeShrinkFreeze :: forall s (n0 :: Nat) (n1 :: Nat) (a :: TYPE R). (n1 <=# n0) -> MutableVector s n0 a -> Nat# n1 -> ST s (Vector n1 a) #
unsafeFreeze :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> ST s (Vector n a) #
freezeSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s (Vector n a) #
freeze# :: forall (n :: Nat) s (a :: TYPE R). Nat# n -> MutableVector# s n a -> State# s -> (# State# s, Vector# n a #) #
freezeSlice# :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector# s m a -> Nat# i -> Nat# n -> State# s -> (# State# s, Vector# n a #) #
Copy
Composite
traverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (a -> m b) -> Nat# n -> Vector n a -> m () #
itraverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector n a -> m () #
itraverse_# :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector# n a -> m () #
traverseST# :: forall (n :: Nat) s (a :: TYPE R) (b :: TYPE R). (a -> State# s -> (# State# s, b #)) -> Nat# n -> Vector# n a -> State# s -> (# State# s, Vector# n b #) #
ifoldl' :: forall (n :: Nat) (a :: TYPE R) b. (b -> Fin# n -> a -> b) -> b -> Nat# n -> Vector n a -> b #
ifoldlSlice' :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R) b. ((i + n) <= m) -> (b -> Fin# (i + n) -> a -> b) -> b -> Vector m a -> Nat# i -> Nat# n -> b #
construct1 :: forall (a :: TYPE R). a -> Vector 1 a #
construct2 :: forall (a :: TYPE R). a -> a -> Vector 2 a #
construct3 :: forall (a :: TYPE R). a -> a -> a -> Vector 3 a #
construct4 :: forall (a :: TYPE R). a -> a -> a -> a -> Vector 4 a #
construct5 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> Vector 5 a #
append :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat# n -> Nat# m -> Vector n a -> Vector m a -> Vector (n + m) a #
cloneSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R). ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a #