| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Vector.Int
Synopsis
- data Vector (a :: Nat) (b :: TYPE R) where
- data Vector# (a :: Nat) (b :: TYPE R) :: UnliftedType
- data MutableVector a (b :: Nat) (c :: TYPE R) where
- MutableVector :: forall a (b :: Nat) (c :: TYPE R). MutableVector# a b c -> MutableVector a b c
- data MutableVector# a (b :: Nat) (c :: TYPE R) :: UnliftedType
- data Bounded (a :: Nat) (b :: TYPE R) where
- data Vector_ (a :: TYPE R) where
- write# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> a -> State# s -> State# s
- write :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> Fin# n -> a -> ST s ()
- read# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> State# s -> (# State# s, a #)
- index# :: forall (n :: Nat) (a :: TYPE R). Vector# n a -> Fin# n -> a
- index :: forall (n :: Nat) (a :: TYPE R). Vector n a -> Fin# n -> a
- unlift :: forall (n :: Nat) (a :: TYPE R). Vector n a -> Vector# n a
- substitute :: forall (m :: Nat) (n :: Nat) (a :: TYPE R). (m :=:# n) -> Vector m a -> Vector n a
- initialized :: forall s (n :: Nat) (a :: TYPE R). Nat# n -> a -> ST s (MutableVector s n a)
- unsafeCoerceLength :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat n -> Vector m a -> Vector n a
- set :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> Nat# n -> a -> ST s ()
- setSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s n a -> Nat# i -> Nat# m -> a -> ST s ()
- unsafeShrinkFreeze :: forall s (n0 :: Nat) (n1 :: Nat) (a :: TYPE R). (n1 <=# n0) -> MutableVector s n0 a -> Nat# n1 -> ST s (Vector n1 a)
- unsafeFreeze :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> ST s (Vector n a)
- freeze :: forall (n :: Nat) s (a :: TYPE R). Nat# n -> MutableVector s n a -> ST s (Vector n a)
- freezeSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s (Vector n a)
- thaw :: forall (n :: Nat) (a :: TYPE R) s. Nat# n -> Vector n a -> ST s (MutableVector s n a)
- tail :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector (n + 1) a -> Vector n a
- cons :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> a -> Vector (n + 1) a
- snoc :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> a -> Vector (n + 1) a
- replaceAt :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Fin# n -> a -> Vector n a
- findIndex :: forall (n :: Nat) (a :: TYPE R). (a -> Bool) -> Nat# n -> Vector n a -> MaybeFin# n
- map :: forall (a :: TYPE R) (n :: Nat). (a -> a) -> Vector n a -> Nat# n -> Vector n a
- all :: forall (a :: TYPE R) (n :: Nat). (a -> Bool) -> Nat# n -> Vector n a -> Bool
- any :: forall (a :: TYPE R) (n :: Nat). (a -> Bool) -> Nat# n -> Vector n a -> Bool
- traverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (a -> m b) -> Nat# n -> Vector n a -> m ()
- itraverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector n a -> m ()
- foldlM :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (b -> a -> m b) -> b -> Nat# n -> Vector n a -> m b
- foldr :: forall (n :: Nat) (a :: TYPE R) b. (a -> b -> b) -> b -> Nat# n -> Vector n a -> b
- ifoldl' :: forall (n :: Nat) (a :: TYPE R) b. (b -> Fin# n -> a -> b) -> b -> Nat# n -> Vector n a -> b
- ifoldlSlice' :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R) b. ((i + n) <= m) -> (b -> Fin# (i + n) -> a -> b) -> b -> Vector m a -> Nat# i -> Nat# n -> b
- replicate :: forall (n :: Nat) (a :: TYPE R). Nat# n -> a -> Vector n a
- empty :: forall (a :: TYPE R). Vector 0 a
- empty_ :: forall (a :: TYPE R). Vector_ a
- construct1 :: forall (a :: TYPE R). a -> Vector 1 a
- construct2 :: forall (a :: TYPE R). a -> a -> Vector 2 a
- construct3 :: forall (a :: TYPE R). a -> a -> a -> Vector 3 a
- construct4 :: forall (a :: TYPE R). a -> a -> a -> a -> Vector 4 a
- construct5 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> Vector 5 a
- construct6 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> Vector 6 a
- construct7 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> a -> Vector 7 a
- construct1# :: forall (a :: TYPE R). a -> Vector# 1 a
- construct2# :: forall (a :: TYPE R). a -> a -> Vector# 2 a
- construct3# :: forall (a :: TYPE R). a -> a -> a -> Vector# 3 a
- construct4# :: forall (a :: TYPE R). a -> a -> a -> a -> Vector# 4 a
- construct7# :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> a -> Vector# 7 a
- construct1_ :: forall (a :: TYPE R). a -> Vector_ a
- construct2_ :: forall (a :: TYPE R). a -> a -> Vector_ a
- construct3_ :: forall (a :: TYPE R). a -> a -> a -> Vector_ a
- construct4_ :: forall (a :: TYPE R). a -> a -> a -> a -> Vector_ a
- construct7_ :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> a -> Vector_ a
- append :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat# n -> Nat# m -> Vector n a -> Vector m a -> Vector (n + m) a
- clone :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Vector n a
- cloneSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R). ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a
- unique :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Bounded n a
- equals :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Vector n a -> Bool
- elem :: forall (n :: Nat) (a :: TYPE R). Nat# n -> a -> Vector n a -> Bool
- findIndexEq :: forall (n :: Nat) (a :: TYPE R). Nat# n -> a -> Vector n a -> MaybeFin# n
- maximum :: forall (n :: Nat) (a :: TYPE R). Nat# n -> (0 <# n) -> Vector n a -> a
- maximumSlice :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R). ((i + n) <=# m) -> (0 <# n) -> Vector m a -> Nat# i -> Nat# n -> a
- maximumSliceInitial :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R). ((i + n) <=# m) -> a -> Vector m a -> Nat# i -> Nat# n -> a
- bubbleSort :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Vector n a
- bubbleSortSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R). ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a
- bubbleSortSliceInPlace :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R) s. ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s ()
- mapEq :: forall (n :: Nat) (a :: TYPE R). Nat# n -> a -> Vector n a -> Vector n Bool#
- index0 :: forall (n :: Natural) (a :: TYPE R). CmpNat 0 n ~ 'LT => Vector n a -> a
- index1 :: forall (n :: Natural) (a :: TYPE R). CmpNat 1 n ~ 'LT => Vector n a -> a
- index2 :: forall (n :: Natural) (a :: TYPE R). CmpNat 2 n ~ 'LT => Vector n a -> a
- index3 :: forall (n :: Natural) (a :: TYPE R). CmpNat 3 n ~ 'LT => Vector n a -> a
- unsafeCoerceVector :: forall (a :: TYPE R) (b :: TYPE R) (n :: Nat). Vector n a -> Vector n b
- vector_ :: forall (n :: Nat) (a :: TYPE R). Nat# n -> Vector n a -> Vector_ a
- length :: forall (n :: Nat) (a :: TYPE R). Vector n a -> Nat# n
Documentation
data Vector# (a :: Nat) (b :: TYPE R) :: UnliftedType #
data MutableVector a (b :: Nat) (c :: TYPE R) where #
Constructors
| MutableVector :: forall a (b :: Nat) (c :: TYPE R). MutableVector# a b c -> MutableVector a b c |
data MutableVector# a (b :: Nat) (c :: TYPE R) :: UnliftedType #
Primitives
write# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> a -> State# s -> State# s #
read# :: forall s (n :: Nat) (a :: TYPE R). MutableVector# s n a -> Fin# n -> State# s -> (# State# s, a #) #
initialized :: forall s (n :: Nat) (a :: TYPE R). Nat# n -> a -> ST s (MutableVector s n a) #
unsafeCoerceLength :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat n -> Vector m a -> Vector n a #
Ranges
setSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s n a -> Nat# i -> Nat# m -> a -> ST s () #
Freeze
unsafeShrinkFreeze :: forall s (n0 :: Nat) (n1 :: Nat) (a :: TYPE R). (n1 <=# n0) -> MutableVector s n0 a -> Nat# n1 -> ST s (Vector n1 a) #
unsafeFreeze :: forall s (n :: Nat) (a :: TYPE R). MutableVector s n a -> ST s (Vector n a) #
freezeSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s (a :: TYPE R). ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s (Vector n a) #
Copy
Composite
traverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (a -> m b) -> Nat# n -> Vector n a -> m () #
itraverse_ :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector n a -> m () #
foldlM :: forall (n :: Nat) m (a :: TYPE R) b. Monad m => (b -> a -> m b) -> b -> Nat# n -> Vector n a -> m b #
ifoldl' :: forall (n :: Nat) (a :: TYPE R) b. (b -> Fin# n -> a -> b) -> b -> Nat# n -> Vector n a -> b #
ifoldlSlice' :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R) b. ((i + n) <= m) -> (b -> Fin# (i + n) -> a -> b) -> b -> Vector m a -> Nat# i -> Nat# n -> b #
construct1 :: forall (a :: TYPE R). a -> Vector 1 a #
construct2 :: forall (a :: TYPE R). a -> a -> Vector 2 a #
construct3 :: forall (a :: TYPE R). a -> a -> a -> Vector 3 a #
construct4 :: forall (a :: TYPE R). a -> a -> a -> a -> Vector 4 a #
construct5 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> Vector 5 a #
construct6 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> Vector 6 a #
construct7 :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> a -> Vector 7 a #
construct1# :: forall (a :: TYPE R). a -> Vector# 1 a #
construct2# :: forall (a :: TYPE R). a -> a -> Vector# 2 a #
construct3# :: forall (a :: TYPE R). a -> a -> a -> Vector# 3 a #
construct4# :: forall (a :: TYPE R). a -> a -> a -> a -> Vector# 4 a #
construct7# :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> a -> Vector# 7 a #
construct1_ :: forall (a :: TYPE R). a -> Vector_ a #
construct2_ :: forall (a :: TYPE R). a -> a -> Vector_ a #
construct3_ :: forall (a :: TYPE R). a -> a -> a -> Vector_ a #
construct4_ :: forall (a :: TYPE R). a -> a -> a -> a -> Vector_ a #
construct7_ :: forall (a :: TYPE R). a -> a -> a -> a -> a -> a -> a -> Vector_ a #
append :: forall (n :: Nat) (m :: Nat) (a :: TYPE R). Nat# n -> Nat# m -> Vector n a -> Vector m a -> Vector (n + m) a #
cloneSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R). ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a #
Ordered
maximumSlice :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R). ((i + n) <=# m) -> (0 <# n) -> Vector m a -> Nat# i -> Nat# n -> a #
maximumSliceInitial :: forall (i :: Nat) (m :: Nat) (n :: Nat) (a :: TYPE R). ((i + n) <=# m) -> a -> Vector m a -> Nat# i -> Nat# n -> a #
bubbleSortSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R). ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a #
bubbleSortSliceInPlace :: forall (i :: Natural) (n :: Natural) (m :: Nat) (a :: TYPE R) s. ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s () #