| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Vector.Lifted
Synopsis
- data Vector (a :: Nat) b where
- data Vector# (a :: Nat) b :: UnliftedType
- data MutableVector a (b :: Nat) c where
- MutableVector :: forall a (b :: Nat) c. MutableVector# a b c -> MutableVector a b c
- data MutableVector# a (b :: Nat) c :: UnliftedType
- data Bounded (a :: Nat) b where
- data Vector_ a where
- type family FromMutability# (m :: Mutability) :: Nat -> TYPE R -> UnliftedType where ...
- write# :: forall s (n :: Nat) a. MutableVector# s n a -> Fin# n -> a -> State# s -> State# s
- write :: forall s (n :: Nat) a. MutableVector s n a -> Fin# n -> a -> ST s ()
- read# :: forall s (n :: Nat) a. MutableVector# s n a -> Fin# n -> State# s -> (# State# s, a #)
- read :: forall s (n :: Nat) a. MutableVector s n a -> Fin# n -> ST s a
- index# :: forall (n :: Nat) a. Vector# n a -> Fin# n -> a
- index :: forall (n :: Nat) a. Vector n a -> Fin# n -> a
- unlift :: forall (n :: Nat) a. Vector n a -> Vector# n a
- substitute :: forall (m :: Nat) (n :: Nat) a. (m :=:# n) -> Vector m a -> Vector n a
- substitute# :: forall (m :: Nat) (n :: Nat) a. (m :=:# n) -> Vector# m a -> Vector# n a
- initialized :: forall s (n :: Nat) a. Nat# n -> a -> ST s (MutableVector s n a)
- initialized# :: forall s (n :: Nat) a. Nat# n -> a -> State# s -> (# State# s, MutableVector# s n a #)
- unsafeCoerceLength :: forall (n :: Nat) (m :: Nat) a. Nat n -> Vector m a -> Vector n a
- set :: forall s (n :: Nat) a. MutableVector s n a -> Nat# n -> a -> ST s ()
- setSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s a. ((i + n) <=# m) -> MutableVector s n a -> Nat# i -> Nat# m -> a -> ST s ()
- unsafeShrinkFreeze :: forall s (n0 :: Nat) (n1 :: Nat) a. (n1 <=# n0) -> MutableVector s n0 a -> Nat# n1 -> ST s (Vector n1 a)
- unsafeFreeze :: forall s (n :: Nat) a. MutableVector s n a -> ST s (Vector n a)
- freeze :: forall (n :: Nat) s a. Nat# n -> MutableVector s n a -> ST s (Vector n a)
- freezeSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s a. ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s (Vector n a)
- freeze# :: forall (n :: Nat) s a. Nat# n -> MutableVector# s n a -> State# s -> (# State# s, Vector# n a #)
- freezeSlice# :: forall (i :: Natural) (n :: Natural) (m :: Nat) s a. ((i + n) <=# m) -> MutableVector# s m a -> Nat# i -> Nat# n -> State# s -> (# State# s, Vector# n a #)
- thaw :: forall (n :: Nat) a s. Nat# n -> Vector n a -> ST s (MutableVector s n a)
- tail :: forall (n :: Nat) a. Nat# n -> Vector (n + 1) a -> Vector n a
- cons :: forall (n :: Nat) a. Nat# n -> Vector n a -> a -> Vector (n + 1) a
- snoc :: forall (n :: Nat) a. Nat# n -> Vector n a -> a -> Vector (n + 1) a
- replaceAt :: forall (n :: Nat) a. Nat# n -> Vector n a -> Fin# n -> a -> Vector n a
- any :: forall a (n :: Nat). (a -> Bool) -> Nat# n -> Vector n a -> Bool
- all :: forall a (n :: Nat). (a -> Bool) -> Nat# n -> Vector n a -> Bool
- findIndex :: forall (n :: Nat) a. (a -> Bool) -> Nat# n -> Vector n a -> MaybeFin# n
- map :: forall a (n :: Nat). (a -> a) -> Vector n a -> Nat# n -> Vector n a
- traverse_ :: forall (n :: Nat) m a b. Monad m => (a -> m b) -> Nat# n -> Vector n a -> m ()
- traverseZip_ :: forall (n :: Nat) m a b c. Monad m => (a -> b -> m c) -> Nat# n -> Vector n a -> Vector n b -> m ()
- itraverse_ :: forall (n :: Nat) m a b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector n a -> m ()
- traverseST# :: forall (n :: Nat) s a b. (a -> State# s -> (# State# s, b #)) -> Nat# n -> Vector# n a -> State# s -> (# State# s, Vector# n b #)
- foldlM :: forall (n :: Nat) m a b. Monad m => (b -> a -> m b) -> b -> Nat# n -> Vector n a -> m b
- ifoldl' :: forall (n :: Nat) a b. (b -> Fin# n -> a -> b) -> b -> Nat# n -> Vector n a -> b
- ifoldlSlice' :: forall (i :: Nat) (m :: Nat) (n :: Nat) a b. ((i + n) <= m) -> (b -> Fin# (i + n) -> a -> b) -> b -> Vector m a -> Nat# i -> Nat# n -> b
- ifoldr :: forall (n :: Nat) a b. (Fin# n -> a -> b -> b) -> b -> Nat# n -> Vector n a -> b
- foldr :: forall (n :: Nat) a b. (a -> b -> b) -> b -> Nat# n -> Vector n a -> b
- foldrZip :: forall (n :: Nat) a b c. (a -> b -> c -> c) -> c -> Nat# n -> Vector n a -> Vector n b -> c
- replicate :: forall (n :: Nat) a. Nat# n -> a -> Vector n a
- empty :: Vector 0 a
- empty# :: (# #) -> Vector# 0 a
- equals :: forall a (n :: Nat). Eq a => Nat# n -> Vector n a -> Vector n a -> Bool
- construct1 :: a -> Vector 1 a
- construct2 :: a -> a -> Vector 2 a
- construct3 :: a -> a -> a -> Vector 3 a
- construct4 :: a -> a -> a -> a -> Vector 4 a
- construct5 :: a -> a -> a -> a -> a -> Vector 5 a
- construct1# :: a -> Vector# 1 a
- construct2# :: a -> a -> Vector# 2 a
- construct3# :: a -> a -> a -> Vector# 3 a
- construct4# :: a -> a -> a -> a -> Vector# 4 a
- append :: forall (n :: Nat) (m :: Nat) a. Nat# n -> Nat# m -> Vector n a -> Vector m a -> Vector (n + m) a
- clone :: forall (n :: Nat) a. Nat# n -> Vector n a -> Vector n a
- cloneSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) a. ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a
- index0 :: forall (n :: Natural) a. CmpNat 0 n ~ 'LT => Vector n a -> a
- index1 :: forall (n :: Natural) a. CmpNat 1 n ~ 'LT => Vector n a -> a
- index2 :: forall (n :: Natural) a. CmpNat 2 n ~ 'LT => Vector n a -> a
- index3 :: forall (n :: Natural) a. CmpNat 3 n ~ 'LT => Vector n a -> a
- index4 :: forall (n :: Natural) a. CmpNat 4 n ~ 'LT => Vector n a -> a
- index5 :: forall (n :: Natural) a. CmpNat 5 n ~ 'LT => Vector n a -> a
- index6 :: forall (n :: Natural) a. CmpNat 6 n ~ 'LT => Vector n a -> a
- index7 :: forall (n :: Natural) a. CmpNat 7 n ~ 'LT => Vector n a -> a
- index8 :: forall (n :: Natural) a. CmpNat 8 n ~ 'LT => Vector n a -> a
- unsafeCoerceVector :: forall a b (n :: Nat). Vector n a -> Vector n b
- with :: SmallArray a -> (forall (n :: Nat). Nat# n -> Vector n a -> b) -> b
- toSmallArray :: forall (n :: Nat) a. Vector n a -> SmallArray a
- fromList :: [a] -> Vector_ a
- fromListN :: forall (n :: Nat) a. Nat# n -> [a] -> Maybe (Vector n a)
- toList :: forall (n :: Nat) a. Vector n a -> [a]
- vector_ :: forall (n :: Nat) a. Nat# n -> Vector n a -> Vector_ a
- length :: forall (n :: Nat) a. Vector n a -> Nat# n
Documentation
data Vector# (a :: Nat) b :: UnliftedType #
data MutableVector a (b :: Nat) c where #
Constructors
| MutableVector :: forall a (b :: Nat) c. MutableVector# a b c -> MutableVector a b c |
data MutableVector# a (b :: Nat) c :: UnliftedType #
type family FromMutability# (m :: Mutability) :: Nat -> TYPE R -> UnliftedType where ... #
Equations
| FromMutability# 'Immutable = Vector# | |
| FromMutability# ('Mutable s) = MutableVector# s |
Primitives
initialized :: forall s (n :: Nat) a. Nat# n -> a -> ST s (MutableVector s n a) #
initialized# :: forall s (n :: Nat) a. Nat# n -> a -> State# s -> (# State# s, MutableVector# s n a #) #
Ranges
setSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s a. ((i + n) <=# m) -> MutableVector s n a -> Nat# i -> Nat# m -> a -> ST s () #
Freeze
unsafeShrinkFreeze :: forall s (n0 :: Nat) (n1 :: Nat) a. (n1 <=# n0) -> MutableVector s n0 a -> Nat# n1 -> ST s (Vector n1 a) #
unsafeFreeze :: forall s (n :: Nat) a. MutableVector s n a -> ST s (Vector n a) #
freezeSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) s a. ((i + n) <=# m) -> MutableVector s m a -> Nat# i -> Nat# n -> ST s (Vector n a) #
freeze# :: forall (n :: Nat) s a. Nat# n -> MutableVector# s n a -> State# s -> (# State# s, Vector# n a #) #
freezeSlice# :: forall (i :: Natural) (n :: Natural) (m :: Nat) s a. ((i + n) <=# m) -> MutableVector# s m a -> Nat# i -> Nat# n -> State# s -> (# State# s, Vector# n a #) #
Copy
Composite
traverseZip_ :: forall (n :: Nat) m a b c. Monad m => (a -> b -> m c) -> Nat# n -> Vector n a -> Vector n b -> m () #
itraverse_ :: forall (n :: Nat) m a b. Monad m => (Fin# n -> a -> m b) -> Nat# n -> Vector n a -> m () #
traverseST# :: forall (n :: Nat) s a b. (a -> State# s -> (# State# s, b #)) -> Nat# n -> Vector# n a -> State# s -> (# State# s, Vector# n b #) #
ifoldlSlice' :: forall (i :: Nat) (m :: Nat) (n :: Nat) a b. ((i + n) <= m) -> (b -> Fin# (i + n) -> a -> b) -> b -> Vector m a -> Nat# i -> Nat# n -> b #
foldrZip :: forall (n :: Nat) a b c. (a -> b -> c -> c) -> c -> Nat# n -> Vector n a -> Vector n b -> c #
construct1 :: a -> Vector 1 a #
construct2 :: a -> a -> Vector 2 a #
construct3 :: a -> a -> a -> Vector 3 a #
construct4 :: a -> a -> a -> a -> Vector 4 a #
construct5 :: a -> a -> a -> a -> a -> Vector 5 a #
construct1# :: a -> Vector# 1 a #
construct2# :: a -> a -> Vector# 2 a #
construct3# :: a -> a -> a -> Vector# 3 a #
construct4# :: a -> a -> a -> a -> Vector# 4 a #
append :: forall (n :: Nat) (m :: Nat) a. Nat# n -> Nat# m -> Vector n a -> Vector m a -> Vector (n + m) a #
cloneSlice :: forall (i :: Natural) (n :: Natural) (m :: Nat) a. ((i + n) <=# m) -> Vector m a -> Nat# i -> Nat# n -> Vector n a #
Index
Unsafe
unsafeCoerceVector :: forall a b (n :: Nat). Vector n a -> Vector n b #
Interop with primitive
toSmallArray :: forall (n :: Nat) a. Vector n a -> SmallArray a Source #