LLVM 20.0.0git
MSP430ISelLowering.cpp
Go to the documentation of this file.
1//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the MSP430TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "MSP430ISelLowering.h"
14#include "MSP430.h"
16#include "MSP430Subtarget.h"
17#include "MSP430TargetMachine.h"
25#include "llvm/IR/CallingConv.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
30#include "llvm/Support/Debug.h"
33using namespace llvm;
34
35#define DEBUG_TYPE "msp430-lower"
36
38 "msp430-no-legal-immediate", cl::Hidden,
39 cl::desc("Enable non legal immediates (for testing purposes only)"),
40 cl::init(false));
41
43 const MSP430Subtarget &STI)
44 : TargetLowering(TM) {
45
46 // Set up the register classes.
47 addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
48 addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
49
50 // Compute derived properties from the register classes
52
53 // Provide all sorts of operation actions
56 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
57
58 // We have post-incremented loads / stores.
61
62 for (MVT VT : MVT::integer_valuetypes()) {
68 }
69
70 // We don't have any truncstores
71 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
72
101
108
115
117
118 // FIXME: Implement efficiently multiplication by a constant
129
142
143 // varargs support
149
150 // EABI Libcalls - EABI Section 6.2
151 const struct {
152 const RTLIB::Libcall Op;
153 const char * const Name;
154 const ISD::CondCode Cond;
155 } LibraryCalls[] = {
156 // Floating point conversions - EABI Table 6
157 { RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
158 { RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
159 // The following is NOT implemented in libgcc
160 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
161 { RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
162 { RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
163 // The following is NOT implemented in libgcc
164 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
165 { RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
166 { RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
167 // The following is NOT implemented in libgcc
168 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
169 { RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
170 { RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
171 // The following is NOT implemented in libgcc
172 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
173 { RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
174 { RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
175 // TODO The following IS implemented in libgcc
176 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
177 { RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
178 // TODO The following IS implemented in libgcc but is not in the EABI
179 { RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
180 // TODO The following IS implemented in libgcc
181 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
182 { RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
183 // The following IS implemented in libgcc but is not in the EABI
184 { RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
185 // TODO The following IS implemented in libgcc
186 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
187 { RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
188 // TODO The following IS implemented in libgcc but is not in the EABI
189 { RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
190 // TODO The following IS implemented in libgcc
191 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
192 { RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
193 // The following IS implemented in libgcc but is not in the EABI
194 { RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
195
196 // Floating point comparisons - EABI Table 7
197 { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
198 { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
199 { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
200 { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
201 { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
202 { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
203 { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
204 { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
205 { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
206 { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
207 { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
208 { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
209
210 // Floating point arithmetic - EABI Table 8
211 { RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
212 { RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
213 { RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
214 { RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
215 { RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
216 { RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
217 { RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
218 { RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
219 // The following are NOT implemented in libgcc
220 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
221 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
222
223 // Universal Integer Operations - EABI Table 9
224 { RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
225 { RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
226 { RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
227 { RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
228 { RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
229 { RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
230 { RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
231 { RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
232 { RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
233 { RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
234 { RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
235 { RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
236
237 // Bitwise Operations - EABI Table 10
238 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
239 { RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
240 { RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
241 { RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
242 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
243
244 };
245
246 for (const auto &LC : LibraryCalls) {
247 setLibcallName(LC.Op, LC.Name);
248 if (LC.Cond != ISD::SETCC_INVALID)
249 setCmpLibcallCC(LC.Op, LC.Cond);
250 }
251
252 if (STI.hasHWMult16()) {
253 const struct {
254 const RTLIB::Libcall Op;
255 const char * const Name;
256 } LibraryCalls[] = {
257 // Integer Multiply - EABI Table 9
258 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
259 { RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
260 { RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
261 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
262 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
263 };
264 for (const auto &LC : LibraryCalls) {
265 setLibcallName(LC.Op, LC.Name);
266 }
267 } else if (STI.hasHWMult32()) {
268 const struct {
269 const RTLIB::Libcall Op;
270 const char * const Name;
271 } LibraryCalls[] = {
272 // Integer Multiply - EABI Table 9
273 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
274 { RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
275 { RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
276 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
277 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
278 };
279 for (const auto &LC : LibraryCalls) {
280 setLibcallName(LC.Op, LC.Name);
281 }
282 } else if (STI.hasHWMultF5()) {
283 const struct {
284 const RTLIB::Libcall Op;
285 const char * const Name;
286 } LibraryCalls[] = {
287 // Integer Multiply - EABI Table 9
288 { RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
289 { RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
290 { RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
291 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
292 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
293 };
294 for (const auto &LC : LibraryCalls) {
295 setLibcallName(LC.Op, LC.Name);
296 }
297 } else { // NoHWMult
298 const struct {
299 const RTLIB::Libcall Op;
300 const char * const Name;
301 } LibraryCalls[] = {
302 // Integer Multiply - EABI Table 9
303 { RTLIB::MUL_I16, "__mspabi_mpyi" },
304 { RTLIB::MUL_I32, "__mspabi_mpyl" },
305 { RTLIB::MUL_I64, "__mspabi_mpyll" },
306 // The __mspabi_mpysl* functions are NOT implemented in libgcc
307 // The __mspabi_mpyul* functions are NOT implemented in libgcc
308 };
309 for (const auto &LC : LibraryCalls) {
310 setLibcallName(LC.Op, LC.Name);
311 }
313 }
314
315 // Several of the runtime library functions use a special calling conv
330 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
331
335}
336
338 SelectionDAG &DAG) const {
339 switch (Op.getOpcode()) {
340 case ISD::SHL: // FALLTHROUGH
341 case ISD::SRL:
342 case ISD::SRA: return LowerShifts(Op, DAG);
343 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
344 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
345 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
346 case ISD::SETCC: return LowerSETCC(Op, DAG);
347 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
348 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
349 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
350 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
351 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
352 case ISD::VASTART: return LowerVASTART(Op, DAG);
353 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
354 default:
355 llvm_unreachable("unimplemented operand");
356 }
357}
358
359// Define non profitable transforms into shifts
361 unsigned Amount) const {
362 return !(Amount == 8 || Amount == 9 || Amount<=2);
363}
364
365// Implemented to verify test case assertions in
366// tests/codegen/msp430/shift-amount-threshold-b.ll
369 return Immed >= -32 && Immed < 32;
371}
372
373//===----------------------------------------------------------------------===//
374// MSP430 Inline Assembly Support
375//===----------------------------------------------------------------------===//
376
377/// getConstraintType - Given a constraint letter, return the type of
378/// constraint it is for this target.
381 if (Constraint.size() == 1) {
382 switch (Constraint[0]) {
383 case 'r':
384 return C_RegisterClass;
385 default:
386 break;
387 }
388 }
389 return TargetLowering::getConstraintType(Constraint);
390}
391
392std::pair<unsigned, const TargetRegisterClass *>
394 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
395 if (Constraint.size() == 1) {
396 // GCC Constraint Letters
397 switch (Constraint[0]) {
398 default: break;
399 case 'r': // GENERAL_REGS
400 if (VT == MVT::i8)
401 return std::make_pair(0U, &MSP430::GR8RegClass);
402
403 return std::make_pair(0U, &MSP430::GR16RegClass);
404 }
405 }
406
408}
409
410//===----------------------------------------------------------------------===//
411// Calling Convention Implementation
412//===----------------------------------------------------------------------===//
413
414#include "MSP430GenCallingConv.inc"
415
416/// For each argument in a function store the number of pieces it is composed
417/// of.
418template<typename ArgT>
421 unsigned CurrentArgIndex;
422
423 if (Args.empty())
424 return;
425
426 CurrentArgIndex = Args[0].OrigArgIndex;
427 Out.push_back(0);
428
429 for (auto &Arg : Args) {
430 if (CurrentArgIndex == Arg.OrigArgIndex) {
431 Out.back() += 1;
432 } else {
433 Out.push_back(1);
434 CurrentArgIndex = Arg.OrigArgIndex;
435 }
436 }
437}
438
439static void AnalyzeVarArgs(CCState &State,
441 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
442}
443
444static void AnalyzeVarArgs(CCState &State,
446 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
447}
448
449/// Analyze incoming and outgoing function arguments. We need custom C++ code
450/// to handle special constraints in the ABI like reversing the order of the
451/// pieces of splitted arguments. In addition, all pieces of a certain argument
452/// have to be passed either using registers or the stack but never mixing both.
453template<typename ArgT>
454static void AnalyzeArguments(CCState &State,
456 const SmallVectorImpl<ArgT> &Args) {
457 static const MCPhysReg CRegList[] = {
458 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
459 };
460 static const unsigned CNbRegs = std::size(CRegList);
461 static const MCPhysReg BuiltinRegList[] = {
462 MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
463 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
464 };
465 static const unsigned BuiltinNbRegs = std::size(BuiltinRegList);
466
467 ArrayRef<MCPhysReg> RegList;
468 unsigned NbRegs;
469
470 bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
471 if (Builtin) {
472 RegList = BuiltinRegList;
473 NbRegs = BuiltinNbRegs;
474 } else {
475 RegList = CRegList;
476 NbRegs = CNbRegs;
477 }
478
479 if (State.isVarArg()) {
480 AnalyzeVarArgs(State, Args);
481 return;
482 }
483
484 SmallVector<unsigned, 4> ArgsParts;
485 ParseFunctionArgs(Args, ArgsParts);
486
487 if (Builtin) {
488 assert(ArgsParts.size() == 2 &&
489 "Builtin calling convention requires two arguments");
490 }
491
492 unsigned RegsLeft = NbRegs;
493 bool UsedStack = false;
494 unsigned ValNo = 0;
495
496 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
497 MVT ArgVT = Args[ValNo].VT;
498 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
499 MVT LocVT = ArgVT;
501
502 // Promote i8 to i16
503 if (LocVT == MVT::i8) {
504 LocVT = MVT::i16;
505 if (ArgFlags.isSExt())
506 LocInfo = CCValAssign::SExt;
507 else if (ArgFlags.isZExt())
508 LocInfo = CCValAssign::ZExt;
509 else
510 LocInfo = CCValAssign::AExt;
511 }
512
513 // Handle byval arguments
514 if (ArgFlags.isByVal()) {
515 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, Align(2), ArgFlags);
516 continue;
517 }
518
519 unsigned Parts = ArgsParts[i];
520
521 if (Builtin) {
522 assert(Parts == 4 &&
523 "Builtin calling convention requires 64-bit arguments");
524 }
525
526 if (!UsedStack && Parts == 2 && RegsLeft == 1) {
527 // Special case for 32-bit register split, see EABI section 3.3.3
528 MCRegister Reg = State.AllocateReg(RegList);
529 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
530 RegsLeft -= 1;
531
532 UsedStack = true;
533 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
534 } else if (Parts <= RegsLeft) {
535 for (unsigned j = 0; j < Parts; j++) {
536 MCRegister Reg = State.AllocateReg(RegList);
537 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
538 RegsLeft--;
539 }
540 } else {
541 UsedStack = true;
542 for (unsigned j = 0; j < Parts; j++)
543 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
544 }
545 }
546}
547
548static void AnalyzeRetResult(CCState &State,
550 State.AnalyzeCallResult(Ins, RetCC_MSP430);
551}
552
553static void AnalyzeRetResult(CCState &State,
555 State.AnalyzeReturn(Outs, RetCC_MSP430);
556}
557
558template<typename ArgT>
559static void AnalyzeReturnValues(CCState &State,
561 const SmallVectorImpl<ArgT> &Args) {
562 AnalyzeRetResult(State, Args);
563}
564
565SDValue MSP430TargetLowering::LowerFormalArguments(
566 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
567 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
568 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
569
570 switch (CallConv) {
571 default:
572 report_fatal_error("Unsupported calling convention");
573 case CallingConv::C:
575 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
577 if (Ins.empty())
578 return Chain;
579 report_fatal_error("ISRs cannot have arguments");
580 }
581}
582
584MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
585 SmallVectorImpl<SDValue> &InVals) const {
586 SelectionDAG &DAG = CLI.DAG;
587 SDLoc &dl = CLI.DL;
589 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
591 SDValue Chain = CLI.Chain;
592 SDValue Callee = CLI.Callee;
593 bool &isTailCall = CLI.IsTailCall;
594 CallingConv::ID CallConv = CLI.CallConv;
595 bool isVarArg = CLI.IsVarArg;
596
597 // MSP430 target does not yet support tail call optimization.
598 isTailCall = false;
599
600 switch (CallConv) {
601 default:
602 report_fatal_error("Unsupported calling convention");
605 case CallingConv::C:
606 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
607 Outs, OutVals, Ins, dl, DAG, InVals);
609 report_fatal_error("ISRs cannot be called directly");
610 }
611}
612
613/// LowerCCCArguments - transform physical registers into virtual registers and
614/// generate load operations for arguments places on the stack.
615// FIXME: struct return stuff
616SDValue MSP430TargetLowering::LowerCCCArguments(
617 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
618 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
619 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
621 MachineFrameInfo &MFI = MF.getFrameInfo();
624
625 // Assign locations to all of the incoming arguments.
627 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
628 *DAG.getContext());
629 AnalyzeArguments(CCInfo, ArgLocs, Ins);
630
631 // Create frame index for the start of the first vararg value
632 if (isVarArg) {
633 unsigned Offset = CCInfo.getStackSize();
634 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
635 }
636
637 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
638 CCValAssign &VA = ArgLocs[i];
639 if (VA.isRegLoc()) {
640 // Arguments passed in registers
641 EVT RegVT = VA.getLocVT();
642 switch (RegVT.getSimpleVT().SimpleTy) {
643 default:
644 {
645#ifndef NDEBUG
646 errs() << "LowerFormalArguments Unhandled argument type: "
647 << RegVT << "\n";
648#endif
649 llvm_unreachable(nullptr);
650 }
651 case MVT::i16:
652 Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
653 RegInfo.addLiveIn(VA.getLocReg(), VReg);
654 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
655
656 // If this is an 8-bit value, it is really passed promoted to 16
657 // bits. Insert an assert[sz]ext to capture this, then truncate to the
658 // right size.
659 if (VA.getLocInfo() == CCValAssign::SExt)
660 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
661 DAG.getValueType(VA.getValVT()));
662 else if (VA.getLocInfo() == CCValAssign::ZExt)
663 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
664 DAG.getValueType(VA.getValVT()));
665
666 if (VA.getLocInfo() != CCValAssign::Full)
667 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
668
669 InVals.push_back(ArgValue);
670 }
671 } else {
672 // Only arguments passed on the stack should make it here.
673 assert(VA.isMemLoc());
674
675 SDValue InVal;
676 ISD::ArgFlagsTy Flags = Ins[i].Flags;
677
678 if (Flags.isByVal()) {
679 MVT PtrVT = VA.getLocVT();
680 int FI = MFI.CreateFixedObject(Flags.getByValSize(),
681 VA.getLocMemOffset(), true);
682 InVal = DAG.getFrameIndex(FI, PtrVT);
683 } else {
684 // Load the argument to a virtual register
685 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
686 if (ObjSize > 2) {
687 errs() << "LowerFormalArguments Unhandled argument type: "
688 << VA.getLocVT() << "\n";
689 }
690 // Create the frame index object for this incoming parameter...
691 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
692
693 // Create the SelectionDAG nodes corresponding to a load
694 //from this parameter
695 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
696 InVal = DAG.getLoad(
697 VA.getLocVT(), dl, Chain, FIN,
699 }
700
701 InVals.push_back(InVal);
702 }
703 }
704
705 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
706 if (Ins[i].Flags.isSRet()) {
707 Register Reg = FuncInfo->getSRetReturnReg();
708 if (!Reg) {
710 getRegClassFor(MVT::i16));
711 FuncInfo->setSRetReturnReg(Reg);
712 }
713 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
714 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
715 }
716 }
717
718 return Chain;
719}
720
721bool
722MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
723 MachineFunction &MF,
724 bool IsVarArg,
726 LLVMContext &Context,
727 const Type *RetTy) const {
729 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
730 return CCInfo.CheckReturn(Outs, RetCC_MSP430);
731}
732
734MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
735 bool isVarArg,
737 const SmallVectorImpl<SDValue> &OutVals,
738 const SDLoc &dl, SelectionDAG &DAG) const {
739
741
742 // CCValAssign - represent the assignment of the return value to a location
744
745 // ISRs cannot return any value.
746 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
747 report_fatal_error("ISRs cannot return any value");
748
749 // CCState - Info about the registers and stack slot.
750 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
751 *DAG.getContext());
752
753 // Analize return values.
754 AnalyzeReturnValues(CCInfo, RVLocs, Outs);
755
756 SDValue Glue;
757 SmallVector<SDValue, 4> RetOps(1, Chain);
758
759 // Copy the result values into the output registers.
760 for (unsigned i = 0; i != RVLocs.size(); ++i) {
761 CCValAssign &VA = RVLocs[i];
762 assert(VA.isRegLoc() && "Can only return in registers!");
763
764 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
765 OutVals[i], Glue);
766
767 // Guarantee that all emitted copies are stuck together,
768 // avoiding something bad.
769 Glue = Chain.getValue(1);
770 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
771 }
772
773 if (MF.getFunction().hasStructRetAttr()) {
775 Register Reg = FuncInfo->getSRetReturnReg();
776
777 if (!Reg)
778 llvm_unreachable("sret virtual register not created in entry block");
779
780 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
781 SDValue Val =
782 DAG.getCopyFromReg(Chain, dl, Reg, PtrVT);
783 unsigned R12 = MSP430::R12;
784
785 Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Glue);
786 Glue = Chain.getValue(1);
787 RetOps.push_back(DAG.getRegister(R12, PtrVT));
788 }
789
790 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
792
793 RetOps[0] = Chain; // Update chain.
794
795 // Add the glue if we have it.
796 if (Glue.getNode())
797 RetOps.push_back(Glue);
798
799 return DAG.getNode(Opc, dl, MVT::Other, RetOps);
800}
801
802/// LowerCCCCallTo - functions arguments are copied from virtual regs to
803/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
804SDValue MSP430TargetLowering::LowerCCCCallTo(
805 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
806 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
807 const SmallVectorImpl<SDValue> &OutVals,
808 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
809 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
810 // Analyze operands of the call, assigning locations to each operand.
812 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
813 *DAG.getContext());
814 AnalyzeArguments(CCInfo, ArgLocs, Outs);
815
816 // Get a count of how many bytes are to be pushed on the stack.
817 unsigned NumBytes = CCInfo.getStackSize();
818 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
819
820 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
821
823 SmallVector<SDValue, 12> MemOpChains;
825
826 // Walk the register/memloc assignments, inserting copies/loads.
827 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
828 CCValAssign &VA = ArgLocs[i];
829
830 SDValue Arg = OutVals[i];
831
832 // Promote the value if needed.
833 switch (VA.getLocInfo()) {
834 default: llvm_unreachable("Unknown loc info!");
835 case CCValAssign::Full: break;
837 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
838 break;
840 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
841 break;
843 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
844 break;
845 }
846
847 // Arguments that can be passed on register must be kept at RegsToPass
848 // vector
849 if (VA.isRegLoc()) {
850 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
851 } else {
852 assert(VA.isMemLoc());
853
854 if (!StackPtr.getNode())
855 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
856
857 SDValue PtrOff =
858 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
859 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
860
862 ISD::ArgFlagsTy Flags = Outs[i].Flags;
863
864 if (Flags.isByVal()) {
865 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
866 MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
867 Flags.getNonZeroByValAlign(),
868 /*isVolatile*/ false,
869 /*AlwaysInline=*/true,
870 /*CI=*/nullptr, std::nullopt,
872 } else {
873 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
874 }
875
876 MemOpChains.push_back(MemOp);
877 }
878 }
879
880 // Transform all store nodes into one single node because all store nodes are
881 // independent of each other.
882 if (!MemOpChains.empty())
883 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
884
885 // Build a sequence of copy-to-reg nodes chained together with token chain and
886 // flag operands which copy the outgoing args into registers. The InGlue in
887 // necessary since all emitted instructions must be stuck together.
888 SDValue InGlue;
889 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
890 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
891 RegsToPass[i].second, InGlue);
892 InGlue = Chain.getValue(1);
893 }
894
895 // If the callee is a GlobalAddress node (quite common, every direct call is)
896 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
897 // Likewise ExternalSymbol -> TargetExternalSymbol.
898 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
899 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
900 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
901 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
902
903 // Returns a chain & a flag for retval copy to use.
904 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
906 Ops.push_back(Chain);
907 Ops.push_back(Callee);
908
909 // Add argument registers to the end of the list so that they are
910 // known live into the call.
911 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
912 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
913 RegsToPass[i].second.getValueType()));
914
915 if (InGlue.getNode())
916 Ops.push_back(InGlue);
917
918 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
919 InGlue = Chain.getValue(1);
920
921 // Create the CALLSEQ_END node.
922 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl);
923 InGlue = Chain.getValue(1);
924
925 // Handle result values, copying them out of physregs into vregs that we
926 // return.
927 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl,
928 DAG, InVals);
929}
930
931/// LowerCallResult - Lower the result values of a call into the
932/// appropriate copies out of appropriate physical registers.
933///
934SDValue MSP430TargetLowering::LowerCallResult(
935 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
936 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
937 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
938
939 // Assign locations to each value returned by this call.
941 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
942 *DAG.getContext());
943
944 AnalyzeReturnValues(CCInfo, RVLocs, Ins);
945
946 // Copy all of the result registers out of their specified physreg.
947 for (unsigned i = 0; i != RVLocs.size(); ++i) {
948 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
949 RVLocs[i].getValVT(), InGlue).getValue(1);
950 InGlue = Chain.getValue(2);
951 InVals.push_back(Chain.getValue(0));
952 }
953
954 return Chain;
955}
956
958 SelectionDAG &DAG) const {
959 unsigned Opc = Op.getOpcode();
960 SDNode* N = Op.getNode();
961 EVT VT = Op.getValueType();
962 SDLoc dl(N);
963
964 // Expand non-constant shifts to loops:
965 if (!isa<ConstantSDNode>(N->getOperand(1)))
966 return Op;
967
968 uint64_t ShiftAmount = N->getConstantOperandVal(1);
969
970 // Expand the stuff into sequence of shifts.
971 SDValue Victim = N->getOperand(0);
972
973 if (ShiftAmount >= 8) {
974 assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
975 switch(Opc) {
976 default:
977 llvm_unreachable("Unknown shift");
978 case ISD::SHL:
979 // foo << (8 + N) => swpb(zext(foo)) << N
980 Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
981 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
982 break;
983 case ISD::SRA:
984 case ISD::SRL:
985 // foo >> (8 + N) => sxt(swpb(foo)) >> N
986 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
987 Victim = (Opc == ISD::SRA)
988 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
989 DAG.getValueType(MVT::i8))
990 : DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
991 break;
992 }
993 ShiftAmount -= 8;
994 }
995
996 if (Opc == ISD::SRL && ShiftAmount) {
997 // Emit a special goodness here:
998 // srl A, 1 => clrc; rrc A
999 Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
1000 ShiftAmount -= 1;
1001 }
1002
1003 while (ShiftAmount--)
1004 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
1005 dl, VT, Victim);
1006
1007 return Victim;
1008}
1009
1011 SelectionDAG &DAG) const {
1012 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1013 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1014 EVT PtrVT = Op.getValueType();
1015
1016 // Create the TargetGlobalAddress node, folding in the constant offset.
1017 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
1018 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
1019}
1020
1022 SelectionDAG &DAG) const {
1023 SDLoc dl(Op);
1024 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
1025 EVT PtrVT = Op.getValueType();
1026 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
1027
1028 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1029}
1030
1032 SelectionDAG &DAG) const {
1033 SDLoc dl(Op);
1034 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1035 EVT PtrVT = Op.getValueType();
1036 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
1037
1038 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1039}
1040
1041static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
1042 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
1043 // FIXME: Handle bittests someday
1044 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
1045
1046 // FIXME: Handle jump negative someday
1048 switch (CC) {
1049 default: llvm_unreachable("Invalid integer condition!");
1050 case ISD::SETEQ:
1051 TCC = MSP430CC::COND_E; // aka COND_Z
1052 // Minor optimization: if LHS is a constant, swap operands, then the
1053 // constant can be folded into comparison.
1054 if (LHS.getOpcode() == ISD::Constant)
1055 std::swap(LHS, RHS);
1056 break;
1057 case ISD::SETNE:
1058 TCC = MSP430CC::COND_NE; // aka COND_NZ
1059 // Minor optimization: if LHS is a constant, swap operands, then the
1060 // constant can be folded into comparison.
1061 if (LHS.getOpcode() == ISD::Constant)
1062 std::swap(LHS, RHS);
1063 break;
1064 case ISD::SETULE:
1065 std::swap(LHS, RHS);
1066 [[fallthrough]];
1067 case ISD::SETUGE:
1068 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1069 // fold constant into instruction.
1070 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1071 LHS = RHS;
1072 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1073 TCC = MSP430CC::COND_LO;
1074 break;
1075 }
1076 TCC = MSP430CC::COND_HS; // aka COND_C
1077 break;
1078 case ISD::SETUGT:
1079 std::swap(LHS, RHS);
1080 [[fallthrough]];
1081 case ISD::SETULT:
1082 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1083 // fold constant into instruction.
1084 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1085 LHS = RHS;
1086 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1087 TCC = MSP430CC::COND_HS;
1088 break;
1089 }
1090 TCC = MSP430CC::COND_LO; // aka COND_NC
1091 break;
1092 case ISD::SETLE:
1093 std::swap(LHS, RHS);
1094 [[fallthrough]];
1095 case ISD::SETGE:
1096 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1097 // fold constant into instruction.
1098 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1099 LHS = RHS;
1100 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1101 TCC = MSP430CC::COND_L;
1102 break;
1103 }
1104 TCC = MSP430CC::COND_GE;
1105 break;
1106 case ISD::SETGT:
1107 std::swap(LHS, RHS);
1108 [[fallthrough]];
1109 case ISD::SETLT:
1110 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1111 // fold constant into instruction.
1112 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1113 LHS = RHS;
1114 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1115 TCC = MSP430CC::COND_GE;
1116 break;
1117 }
1118 TCC = MSP430CC::COND_L;
1119 break;
1120 }
1121
1122 TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
1123 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
1124}
1125
1126
1128 SDValue Chain = Op.getOperand(0);
1129 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1130 SDValue LHS = Op.getOperand(2);
1131 SDValue RHS = Op.getOperand(3);
1132 SDValue Dest = Op.getOperand(4);
1133 SDLoc dl (Op);
1134
1135 SDValue TargetCC;
1136 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1137
1138 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
1139 Chain, Dest, TargetCC, Flag);
1140}
1141
1143 SDValue LHS = Op.getOperand(0);
1144 SDValue RHS = Op.getOperand(1);
1145 SDLoc dl (Op);
1146
1147 // If we are doing an AND and testing against zero, then the CMP
1148 // will not be generated. The AND (or BIT) will generate the condition codes,
1149 // but they are different from CMP.
1150 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1151 // lowering & isel wouldn't diverge.
1152 bool andCC = isNullConstant(RHS) && LHS.hasOneUse() &&
1153 (LHS.getOpcode() == ISD::AND ||
1154 (LHS.getOpcode() == ISD::TRUNCATE &&
1155 LHS.getOperand(0).getOpcode() == ISD::AND));
1156 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1157 SDValue TargetCC;
1158 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1159
1160 // Get the condition codes directly from the status register, if its easy.
1161 // Otherwise a branch will be generated. Note that the AND and BIT
1162 // instructions generate different flags than CMP, the carry bit can be used
1163 // for NE/EQ.
1164 bool Invert = false;
1165 bool Shift = false;
1166 bool Convert = true;
1167 switch (TargetCC->getAsZExtVal()) {
1168 default:
1169 Convert = false;
1170 break;
1171 case MSP430CC::COND_HS:
1172 // Res = SR & 1, no processing is required
1173 break;
1174 case MSP430CC::COND_LO:
1175 // Res = ~(SR & 1)
1176 Invert = true;
1177 break;
1178 case MSP430CC::COND_NE:
1179 if (andCC) {
1180 // C = ~Z, thus Res = SR & 1, no processing is required
1181 } else {
1182 // Res = ~((SR >> 1) & 1)
1183 Shift = true;
1184 Invert = true;
1185 }
1186 break;
1187 case MSP430CC::COND_E:
1188 Shift = true;
1189 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1190 // Res = (SR >> 1) & 1 is 1 word shorter.
1191 break;
1192 }
1193 EVT VT = Op.getValueType();
1194 SDValue One = DAG.getConstant(1, dl, VT);
1195 if (Convert) {
1196 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
1197 MVT::i16, Flag);
1198 if (Shift)
1199 // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1200 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
1201 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
1202 if (Invert)
1203 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
1204 return SR;
1205 } else {
1206 SDValue Zero = DAG.getConstant(0, dl, VT);
1207 SDValue Ops[] = {One, Zero, TargetCC, Flag};
1208 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1209 }
1210}
1211
1213 SelectionDAG &DAG) const {
1214 SDValue LHS = Op.getOperand(0);
1215 SDValue RHS = Op.getOperand(1);
1216 SDValue TrueV = Op.getOperand(2);
1217 SDValue FalseV = Op.getOperand(3);
1218 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1219 SDLoc dl (Op);
1220
1221 SDValue TargetCC;
1222 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1223
1224 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1225
1226 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1227}
1228
1230 SelectionDAG &DAG) const {
1231 SDValue Val = Op.getOperand(0);
1232 EVT VT = Op.getValueType();
1233 SDLoc dl(Op);
1234
1235 assert(VT == MVT::i16 && "Only support i16 for now!");
1236
1237 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1238 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1239 DAG.getValueType(Val.getValueType()));
1240}
1241
1242SDValue
1246 int ReturnAddrIndex = FuncInfo->getRAIndex();
1247 MVT PtrVT = getFrameIndexTy(MF.getDataLayout());
1248
1249 if (ReturnAddrIndex == 0) {
1250 // Set up a frame object for the return address.
1251 uint64_t SlotSize = PtrVT.getStoreSize();
1252 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
1253 true);
1254 FuncInfo->setRAIndex(ReturnAddrIndex);
1255 }
1256
1257 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1258}
1259
1261 SelectionDAG &DAG) const {
1263 MFI.setReturnAddressIsTaken(true);
1264
1266 return SDValue();
1267
1268 unsigned Depth = Op.getConstantOperandVal(0);
1269 SDLoc dl(Op);
1270 EVT PtrVT = Op.getValueType();
1271
1272 if (Depth > 0) {
1273 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1274 SDValue Offset =
1275 DAG.getConstant(PtrVT.getStoreSize(), dl, MVT::i16);
1276 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1277 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1279 }
1280
1281 // Just load the return address.
1282 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1283 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1285}
1286
1288 SelectionDAG &DAG) const {
1290 MFI.setFrameAddressIsTaken(true);
1291
1292 EVT VT = Op.getValueType();
1293 SDLoc dl(Op); // FIXME probably not meaningful
1294 unsigned Depth = Op.getConstantOperandVal(0);
1295 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1296 MSP430::R4, VT);
1297 while (Depth--)
1298 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1300 return FrameAddr;
1301}
1302
1304 SelectionDAG &DAG) const {
1307
1308 SDValue Ptr = Op.getOperand(1);
1309 EVT PtrVT = Ptr.getValueType();
1310
1311 // Frame index of first vararg argument
1312 SDValue FrameIndex =
1313 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1314 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1315
1316 // Create a store of the frame index to the location operand
1317 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Ptr,
1318 MachinePointerInfo(SV));
1319}
1320
1322 SelectionDAG &DAG) const {
1323 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1324 EVT PtrVT = Op.getValueType();
1325 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1326 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1327}
1328
1329/// getPostIndexedAddressParts - returns true by value, base pointer and
1330/// offset pointer and addressing mode by reference if this node can be
1331/// combined with a load / store to form a post-indexed load / store.
1332bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1333 SDValue &Base,
1334 SDValue &Offset,
1336 SelectionDAG &DAG) const {
1337
1338 LoadSDNode *LD = cast<LoadSDNode>(N);
1339 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1340 return false;
1341
1342 EVT VT = LD->getMemoryVT();
1343 if (VT != MVT::i8 && VT != MVT::i16)
1344 return false;
1345
1346 if (Op->getOpcode() != ISD::ADD)
1347 return false;
1348
1349 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1350 uint64_t RHSC = RHS->getZExtValue();
1351 if ((VT == MVT::i16 && RHSC != 2) ||
1352 (VT == MVT::i8 && RHSC != 1))
1353 return false;
1354
1355 Base = Op->getOperand(0);
1356 Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1357 AM = ISD::POST_INC;
1358 return true;
1359 }
1360
1361 return false;
1362}
1363
1364
1365const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1366 switch ((MSP430ISD::NodeType)Opcode) {
1367 case MSP430ISD::FIRST_NUMBER: break;
1368 case MSP430ISD::RET_GLUE: return "MSP430ISD::RET_GLUE";
1369 case MSP430ISD::RETI_GLUE: return "MSP430ISD::RETI_GLUE";
1370 case MSP430ISD::RRA: return "MSP430ISD::RRA";
1371 case MSP430ISD::RLA: return "MSP430ISD::RLA";
1372 case MSP430ISD::RRC: return "MSP430ISD::RRC";
1373 case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
1374 case MSP430ISD::CALL: return "MSP430ISD::CALL";
1375 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
1376 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
1377 case MSP430ISD::CMP: return "MSP430ISD::CMP";
1378 case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
1379 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
1380 case MSP430ISD::DADD: return "MSP430ISD::DADD";
1381 }
1382 return nullptr;
1383}
1384
1386 Type *Ty2) const {
1387 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1388 return false;
1389
1390 return (Ty1->getPrimitiveSizeInBits().getFixedValue() >
1392}
1393
1395 if (!VT1.isInteger() || !VT2.isInteger())
1396 return false;
1397
1398 return (VT1.getFixedSizeInBits() > VT2.getFixedSizeInBits());
1399}
1400
1402 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1403 return false && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1404}
1405
1407 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1408 return false && VT1 == MVT::i8 && VT2 == MVT::i16;
1409}
1410
1411//===----------------------------------------------------------------------===//
1412// Other Lowering Code
1413//===----------------------------------------------------------------------===//
1414
1417 MachineBasicBlock *BB) const {
1418 MachineFunction *F = BB->getParent();
1419 MachineRegisterInfo &RI = F->getRegInfo();
1420 DebugLoc dl = MI.getDebugLoc();
1421 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1422
1423 unsigned Opc;
1424 bool ClearCarry = false;
1425 const TargetRegisterClass * RC;
1426 switch (MI.getOpcode()) {
1427 default: llvm_unreachable("Invalid shift opcode!");
1428 case MSP430::Shl8:
1429 Opc = MSP430::ADD8rr;
1430 RC = &MSP430::GR8RegClass;
1431 break;
1432 case MSP430::Shl16:
1433 Opc = MSP430::ADD16rr;
1434 RC = &MSP430::GR16RegClass;
1435 break;
1436 case MSP430::Sra8:
1437 Opc = MSP430::RRA8r;
1438 RC = &MSP430::GR8RegClass;
1439 break;
1440 case MSP430::Sra16:
1441 Opc = MSP430::RRA16r;
1442 RC = &MSP430::GR16RegClass;
1443 break;
1444 case MSP430::Srl8:
1445 ClearCarry = true;
1446 Opc = MSP430::RRC8r;
1447 RC = &MSP430::GR8RegClass;
1448 break;
1449 case MSP430::Srl16:
1450 ClearCarry = true;
1451 Opc = MSP430::RRC16r;
1452 RC = &MSP430::GR16RegClass;
1453 break;
1454 case MSP430::Rrcl8:
1455 case MSP430::Rrcl16: {
1456 BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1457 .addReg(MSP430::SR).addImm(1);
1458 Register SrcReg = MI.getOperand(1).getReg();
1459 Register DstReg = MI.getOperand(0).getReg();
1460 unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
1461 ? MSP430::RRC16r : MSP430::RRC8r;
1462 BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
1463 .addReg(SrcReg);
1464 MI.eraseFromParent(); // The pseudo instruction is gone now.
1465 return BB;
1466 }
1467 }
1468
1469 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1471
1472 // Create loop block
1473 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1474 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1475
1476 F->insert(I, LoopBB);
1477 F->insert(I, RemBB);
1478
1479 // Update machine-CFG edges by transferring all successors of the current
1480 // block to the block containing instructions after shift.
1481 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1482 BB->end());
1484
1485 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1486 BB->addSuccessor(LoopBB);
1487 BB->addSuccessor(RemBB);
1488 LoopBB->addSuccessor(RemBB);
1489 LoopBB->addSuccessor(LoopBB);
1490
1491 Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1492 Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1493 Register ShiftReg = RI.createVirtualRegister(RC);
1494 Register ShiftReg2 = RI.createVirtualRegister(RC);
1495 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1496 Register SrcReg = MI.getOperand(1).getReg();
1497 Register DstReg = MI.getOperand(0).getReg();
1498
1499 // BB:
1500 // cmp 0, N
1501 // je RemBB
1502 BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1503 .addReg(ShiftAmtSrcReg).addImm(0);
1504 BuildMI(BB, dl, TII.get(MSP430::JCC))
1505 .addMBB(RemBB)
1507
1508 // LoopBB:
1509 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1510 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1511 // ShiftReg2 = shift ShiftReg
1512 // ShiftAmt2 = ShiftAmt - 1;
1513 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1514 .addReg(SrcReg).addMBB(BB)
1515 .addReg(ShiftReg2).addMBB(LoopBB);
1516 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1517 .addReg(ShiftAmtSrcReg).addMBB(BB)
1518 .addReg(ShiftAmtReg2).addMBB(LoopBB);
1519 if (ClearCarry)
1520 BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1521 .addReg(MSP430::SR).addImm(1);
1522 if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
1523 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1524 .addReg(ShiftReg)
1525 .addReg(ShiftReg);
1526 else
1527 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1528 .addReg(ShiftReg);
1529 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1530 .addReg(ShiftAmtReg).addImm(1);
1531 BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1532 .addMBB(LoopBB)
1534
1535 // RemBB:
1536 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1537 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1538 .addReg(SrcReg).addMBB(BB)
1539 .addReg(ShiftReg2).addMBB(LoopBB);
1540
1541 MI.eraseFromParent(); // The pseudo instruction is gone now.
1542 return RemBB;
1543}
1544
1547 MachineBasicBlock *BB) const {
1548 unsigned Opc = MI.getOpcode();
1549
1550 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1551 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1552 Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
1553 Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
1554 return EmitShiftInstr(MI, BB);
1555
1557 DebugLoc dl = MI.getDebugLoc();
1558
1559 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1560 "Unexpected instr type to insert");
1561
1562 // To "insert" a SELECT instruction, we actually have to insert the diamond
1563 // control-flow pattern. The incoming instruction knows the destination vreg
1564 // to set, the condition code register to branch on, the true/false values to
1565 // select between, and a branch opcode to use.
1566 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1568
1569 // thisMBB:
1570 // ...
1571 // TrueVal = ...
1572 // cmpTY ccX, r1, r2
1573 // jCC copy1MBB
1574 // fallthrough --> copy0MBB
1575 MachineBasicBlock *thisMBB = BB;
1576 MachineFunction *F = BB->getParent();
1577 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1578 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1579 F->insert(I, copy0MBB);
1580 F->insert(I, copy1MBB);
1581 // Update machine-CFG edges by transferring all successors of the current
1582 // block to the new block which will contain the Phi node for the select.
1583 copy1MBB->splice(copy1MBB->begin(), BB,
1584 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1585 copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1586 // Next, add the true and fallthrough blocks as its successors.
1587 BB->addSuccessor(copy0MBB);
1588 BB->addSuccessor(copy1MBB);
1589
1590 BuildMI(BB, dl, TII.get(MSP430::JCC))
1591 .addMBB(copy1MBB)
1592 .addImm(MI.getOperand(3).getImm());
1593
1594 // copy0MBB:
1595 // %FalseValue = ...
1596 // # fallthrough to copy1MBB
1597 BB = copy0MBB;
1598
1599 // Update machine-CFG edges
1600 BB->addSuccessor(copy1MBB);
1601
1602 // copy1MBB:
1603 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1604 // ...
1605 BB = copy1MBB;
1606 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
1607 .addReg(MI.getOperand(2).getReg())
1608 .addMBB(copy0MBB)
1609 .addReg(MI.getOperand(1).getReg())
1610 .addMBB(thisMBB);
1611
1612 MI.eraseFromParent(); // The pseudo instruction is gone now.
1613 return BB;
1614}
return RetTy
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
static void AnalyzeReturnValues(CCState &State, SmallVectorImpl< CCValAssign > &RVLocs, const SmallVectorImpl< ArgT > &Args)
static void AnalyzeVarArgs(CCState &State, const SmallVectorImpl< ISD::OutputArg > &Outs)
static void AnalyzeRetResult(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins)
static cl::opt< bool > MSP430NoLegalImmediate("msp430-no-legal-immediate", cl::Hidden, cl::desc("Enable non legal immediates (for testing purposes only)"), cl::init(false))
static void ParseFunctionArgs(const SmallVectorImpl< ArgT > &Args, SmallVectorImpl< unsigned > &Out)
For each argument in a function store the number of pieces it is composed of.
static void AnalyzeArguments(CCState &State, SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ArgT > &Args)
Analyze incoming and outgoing function arguments.
static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC, ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG)
unsigned const TargetRegisterInfo * TRI
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
The address of a basic block.
Definition: Constants.h:893
CCState - This class holds information needed while lowering arguments and return values.
void HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, int MinSize, Align MinAlign, ISD::ArgFlagsTy ArgFlags)
Allocate space on the stack large enough to pass an argument by value.
void AnalyzeCallResult(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeCallResult - Analyze the return values of a call, incorporating info about the passed values i...
CallingConv::ID getCallingConv() const
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeReturn - Analyze the returned values of a return, incorporating info about the result values i...
void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
bool isVarArg() const
void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
void addLoc(const CCValAssign &V)
CCValAssign - Represent assignment of one arg/retval to a location.
bool isRegLoc() const
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
bool isMemLoc() const
int64_t getLocMemOffset() const
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
bool hasStructRetAttr() const
Determine if the function returns a structure through first or second pointer argument.
Definition: Function.h:688
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
This class is used to represent ISD::LOAD nodes.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
MSP430MachineFunctionInfo - This class is derived from MachineFunction and contains private MSP430 ta...
const MSP430RegisterInfo * getRegisterInfo() const override
bool hasHWMultF5() const
bool hasHWMult32() const
bool hasHWMult16() const
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const
MSP430TargetLowering(const TargetMachine &TM, const MSP430Subtarget &STI)
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
LowerOperation - Provide custom lowering hooks for some operations.
MachineBasicBlock * EmitShiftInstr(MachineInstr &MI, MachineBasicBlock *BB) const
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
isTruncateFree - Return true if it's free to truncate a value of type Ty1 to type Ty2.
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
SDValue LowerShifts(SDValue Op, SelectionDAG &DAG) const
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const
const char * getTargetNodeName(unsigned Opcode) const override
getTargetNodeName - This method returns the name of a target specific DAG node.
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const
bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const override
Return true if creating a shift of the type by the given amount is not profitable.
bool isZExtFree(Type *Ty1, Type *Ty2) const override
isZExtFree - Return true if any actual instruction that defines a value of type Ty1 implicit zero-ext...
TargetLowering::ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
bool isLegalICmpImmediate(int64_t) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
Machine Value Type.
SimpleValueType SimpleTy
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
void setFrameAddressIsTaken(bool T)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:71
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:228
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:751
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
Definition: SelectionDAG.h:802
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getRegister(Register Reg, EVT VT)
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
Definition: SelectionDAG.h:761
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
Definition: SelectionDAG.h:828
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:497
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:797
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:492
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVMContext * getContext() const
Definition: SelectionDAG.h:510
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
Definition: SelectionDAG.h:580
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC)
Override the default CondCode to be used to test the result of the comparison libcall against zero.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM Value Representation.
Definition: Value.h:74
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:202
self_iterator getIterator()
Definition: ilist_node.h:132
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
CondCodes
Definition: MSP430.h:22
@ COND_LO
Definition: MSP430.h:26
@ COND_L
Definition: MSP430.h:28
@ COND_INVALID
Definition: MSP430.h:32
@ COND_E
Definition: MSP430.h:23
@ COND_GE
Definition: MSP430.h:27
@ COND_NE
Definition: MSP430.h:24
@ COND_HS
Definition: MSP430.h:25
@ MSP430_BUILTIN
Used for special MSP430 rtlib functions which have an "optimized" convention using additional registe...
Definition: CallingConv.h:210
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ MSP430_INTR
Used for MSP430 interrupt routines.
Definition: CallingConv.h:117
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:780
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
Definition: ISDOpcodes.h:1197
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
Definition: ISDOpcodes.h:1193
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition: ISDOpcodes.h:257
@ BSWAP
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:744
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
Definition: ISDOpcodes.h:1226
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:246
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:814
@ GlobalAddress
Definition: ISDOpcodes.h:78
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition: ISDOpcodes.h:262
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:805
@ BR_CC
BR_CC - Conditional branch.
Definition: ISDOpcodes.h:1148
@ BR_JT
BR_JT - Jumptable branch.
Definition: ISDOpcodes.h:1127
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:757
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
Definition: ISDOpcodes.h:1222
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition: ISDOpcodes.h:674
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:735
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:811
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition: ISDOpcodes.h:772
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
Definition: ISDOpcodes.h:1112
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition: ISDOpcodes.h:849
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition: ISDOpcodes.h:100
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:709
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition: ISDOpcodes.h:52
@ ExternalSymbol
Definition: ISDOpcodes.h:83
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:817
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
Definition: ISDOpcodes.h:1217
@ BRCOND
BRCOND - Conditional branch.
Definition: ISDOpcodes.h:1141
@ BlockAddress
Definition: ISDOpcodes.h:84
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition: ISDOpcodes.h:794
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition: ISDOpcodes.h:61
@ AssertZext
Definition: ISDOpcodes.h:62
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1559
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1610
@ CALL
CALL - These operations represent an abstract call instruction, which includes a bunch of information...
@ RRA
Y = R{R,L}A X, rotate right (left) arithmetically.
@ BR_CC
MSP430 conditional branches.
@ DADD
DADD - Decimal addition with carry TODO Nothing generates a node of this type yet.
@ SETCC
SetCC - Operand 0 is condition code, and operand 1 is the flag operand produced by a CMP instruction.
@ RRCL
Rotate right via carry, carry gets cleared beforehand by clrc.
@ RETI_GLUE
Same as RET_GLUE, but used for returning from ISRs.
@ SELECT_CC
SELECT_CC - Operand 0 and operand 1 are selection variable, operand 3 is condition code and operand 4...
@ CMP
CMP - Compare instruction.
@ RRC
Y = RRC X, rotate right via carry.
@ Wrapper
Wrapper - A wrapper node for TargetConstantPool, TargetExternalSymbol, and TargetGlobalAddress.
@ RET_GLUE
Return with a glue operand. Operand 0 is the chain operand.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
DWARFExpression::Operation Op
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition: ValueTypes.h:390
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:311
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition: ValueTypes.h:376
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:152
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals