Compare the Top AI Models for Windows as of July 2025

What are AI Models for Windows?

AI models are systems designed to simulate human intelligence by learning from data and solving complex tasks. They include specialized types like Large Language Models (LLMs) for text generation, image models for visual recognition and editing, and video models for processing and analyzing dynamic content. These models power applications such as chatbots, facial recognition, video summarization, and personalized recommendations. Their capabilities rely on advanced algorithms, extensive training datasets, and robust computational resources. AI models are transforming industries by automating processes, enhancing decision-making, and enabling creative innovations. Compare and read user reviews of the best AI Models for Windows currently available using the table below. This list is updated regularly.

  • 1
    LM-Kit.NET
    LM-Kit.NET now lets your .NET apps run the latest open models entirely on device, including Meta Llama 4, DeepSeek V3-0324, Microsoft Phi 4 (plus mini and multimodal variants), Mistral Mixtral 8x22B, Google Gemma 3, and Alibaba Qwen 2.5 VL, so you get cutting-edge language, vision, and audio performance without calling any external service. A continuously updated model catalog with setup instructions and quantized builds is available at docs.lm-kit.com/lm-kit-net/guides/getting-started/model-catalog.html, letting you integrate new releases quickly while keeping latency low and data fully private.
    Leader badge
    Starting Price: Free (Community) or $1000/year
    Partner badge
    View Software
    Visit Website
  • 2
    BLACKBOX AI

    BLACKBOX AI

    BLACKBOX AI

    BLACKBOX AI is an advanced AI-powered platform designed to accelerate coding, app development, and deep research tasks. It features an AI Coding Agent that supports real-time voice interaction, GPU acceleration, and remote parallel task execution. Users can convert Figma designs into functional code and transform images into web applications with minimal coding effort. The platform enables screen sharing within IDEs like VSCode and offers mobile access to coding agents. BLACKBOX AI also supports integration with GitHub repositories for streamlined remote workflows. Its capabilities extend to website design, app building with PDF context, and image generation and editing.
    Starting Price: Free
  • 3
    Qwen2.5

    Qwen2.5

    Alibaba

    Qwen2.5 is an advanced multimodal AI model designed to provide highly accurate and context-aware responses across a wide range of applications. It builds on the capabilities of its predecessors, integrating cutting-edge natural language understanding with enhanced reasoning, creativity, and multimodal processing. Qwen2.5 can seamlessly analyze and generate text, interpret images, and interact with complex data to deliver precise solutions in real time. Optimized for adaptability, it excels in personalized assistance, data analysis, creative content generation, and academic research, making it a versatile tool for professionals and everyday users alike. Its user-centric design emphasizes transparency, efficiency, and alignment with ethical AI practices.
    Starting Price: Free
  • 4
    Llama 3
    We’ve integrated Llama 3 into Meta AI, our intelligent assistant, that expands the ways people can get things done, create and connect with Meta AI. You can see first-hand the performance of Llama 3 by using Meta AI for coding tasks and problem solving. Whether you're developing agents, or other AI-powered applications, Llama 3 in both 8B and 70B will offer the capabilities and flexibility you need to develop your ideas. With the release of Llama 3, we’ve updated the Responsible Use Guide (RUG) to provide the most comprehensive information on responsible development with LLMs. Our system-centric approach includes updates to our trust and safety tools with Llama Guard 2, optimized to support the newly announced taxonomy published by MLCommons expanding its coverage to a more comprehensive set of safety categories, code shield, and Cybersec Eval 2.
    Starting Price: Free
  • 5
    Sonar

    Sonar

    Perplexity

    Perplexity has recently introduced an enhanced version of its AI search engine, named Sonar. Built upon the Llama 3.3 70B model, Sonar has undergone additional training to improve the factual accuracy and readability of responses in Perplexity's default search mode. This advancement aims to deliver users more precise and comprehensible answers while maintaining the platform's characteristic efficiency and speed. Sonar also provides real-time, web-wide research and Q&A capabilities, allowing developers to integrate these features into their products through a lightweight, cost-effective, and user-friendly API. The Sonar API supports advanced models like sonar-reasoning-pro and sonar-pro, designed for complex tasks requiring deep understanding and context retention. These models offer detailed answers with an average of twice as many citations as previous versions, enhancing the transparency and reliability of the information provided.
    Starting Price: Free
  • 6
    Qwen3-Coder
    Qwen3‑Coder is an agentic code model available in multiple sizes, led by the 480B‑parameter Mixture‑of‑Experts variant (35B active) that natively supports 256K‑token contexts (extendable to 1M) and achieves state‑of‑the‑art results comparable to Claude Sonnet 4. Pre‑training on 7.5T tokens (70 % code) and synthetic data cleaned via Qwen2.5‑Coder optimized both coding proficiency and general abilities, while post‑training employs large‑scale, execution‑driven reinforcement learning, scaling test‑case generation for diverse coding challenges, and long‑horizon RL across 20,000 parallel environments to excel on multi‑turn software‑engineering benchmarks like SWE‑Bench Verified without test‑time scaling. Alongside the model, the open source Qwen Code CLI (forked from Gemini Code) unleashes Qwen3‑Coder in agentic workflows with customized prompts, function calling protocols, and seamless integration with Node.js, OpenAI SDKs, and environment variables.
    Starting Price: Free
  • 7
    Gemma 3n

    Gemma 3n

    Google DeepMind

    Gemma 3n is our state-of-the-art open multimodal model, engineered for on-device performance and efficiency. Made for responsive, low-footprint local inference, Gemma 3n empowers a new wave of intelligent, on-the-go applications. It analyzes and responds to combined images and text, with video and audio coming soon. Build intelligent, interactive features that put user privacy first and work reliably offline. Mobile-first architecture, with a significantly reduced memory footprint. Co-designed by Google's mobile hardware teams and industry leaders. 4B active memory footprint with the ability to create submodels for quality-latency tradeoffs. Gemma 3n is our first open model built on this groundbreaking, shared architecture, allowing developers to begin experimenting with this technology today in an early preview.
  • 8
    Mu

    Mu

    Microsoft

    Mu is a 330-million-parameter encoder–decoder language model designed to power the agent in Windows settings by mapping natural-language queries to Settings function calls, running fully on-device via NPUs at over 100 tokens per second while maintaining high accuracy. Drawing on Phi Silica optimizations, Mu’s encoder–decoder architecture reuses a fixed-length latent representation to cut computation and memory overhead, yielding 47 percent lower first-token latency and 4.7× higher decoding speed on Qualcomm Hexagon NPUs compared to similar decoder-only models. Hardware-aware tuning, including a 2/3–1/3 encoder–decoder parameter split, weight sharing between input and output embeddings, Dual LayerNorm, rotary positional embeddings, and grouped-query attention, enables fast inference at over 200 tokens per second on devices like Surface Laptop 7 and sub-500 ms response times for settings queries.
  • Previous
  • You're on page 1
  • Next