Compare the Top Image Annotation Tools in the UK as of November 2025

What are Image Annotation Tools in the UK?

Image annotation tools are used to automatically process and label digital images using advanced techniques in machine learning, AI, and computer vision. These tools can accurately recognize important features in images, such as objects, characters, or facial expressions. This data can then be used for various purposes such as automatic image tagging and sorting. Image annotation is becoming an increasingly popular tool for organizing large databases of images and videos. Compare and read user reviews of the best Image Annotation tools in the UK currently available using the table below. This list is updated regularly.

  • 1
    Ango Hub

    Ango Hub

    iMerit

    Ango Hub is a quality-focused, enterprise-ready data annotation platform for AI teams, available on cloud and on-premise. It supports computer vision, medical imaging, NLP, audio, video, and 3D point cloud annotation, powering use cases from autonomous driving and robotics to healthcare AI. Built for AI fine-tuning, RLHF, LLM evaluation, and human-in-the-loop workflows, Ango Hub boosts throughput with automation, model-assisted pre-labeling, and customizable QA while maintaining accuracy. Features include centralized instructions, review pipelines, issue tracking, and consensus across up to 30 annotators. With nearly twenty labeling tools—such as rotated bounding boxes, label relations, nested conditional questions, and table-based labeling—it supports both simple and complex projects. It also enables annotation pipelines for chain-of-thought reasoning and next-gen LLM training and enterprise-grade security with HIPAA compliance, SOC 2 certification, and role-based access controls.
    View Tool
    Visit Website
  • 2
    Vertex AI
    Image Annotation in Vertex AI is a powerful tool for preparing visual data for training computer vision models. By labeling and tagging objects, features, or regions of interest in images, businesses can create more accurate and specialized models for tasks like object detection and facial recognition. Vertex AI provides automated and manual annotation tools that can handle large volumes of image data, ensuring high-quality annotations for machine learning models. New customers receive $300 in free credits, enabling them to test the platform’s image annotation capabilities. With this feature, businesses can accelerate the development of visual AI solutions, increasing the accuracy and reliability of their models.
    Starting Price: Free ($300 in free credits)
    View Tool
    Visit Website
  • 3
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • 4
    Tasq.ai

    Tasq.ai

    Tasq.ai

    Tasq.ai delivers a powerful, no-code platform for building hybrid AI workflows that combine state-of-the-art machine learning with global, decentralized human guidance, ensuring unmatched scalability, control, and precision. It enables teams to configure AI pipelines visually, breaking tasks into micro-workflows that layer automated inference and quality-assured human review. This decoupled orchestration supports diverse use cases across text, computer vision, audio, video, and structured data, with rapid deployment, adaptive sampling, and consensus-based validation built in. Key capabilities include global deployment of highly screened contributors (“Tasqers”) for unbiased, high-accuracy annotations; granular task routing and judgment aggregation to meet confidence thresholds; and seamless integration into ML ops pipelines via drag-and-drop customization.
  • Previous
  • You're on page 1
  • Next