Compare the Top OLAP Databases as of June 2025

What are OLAP Databases?

OLAP (Online Analytical Processing) databases are designed to support complex queries and data analysis, typically for business intelligence and decision-making purposes. They enable users to interactively explore large volumes of multidimensional data, offering fast retrieval of insights across various dimensions such as time, geography, and product categories. OLAP databases use specialized structures like cubes to allow for rapid aggregation and calculation of data. These databases are highly optimized for read-heavy operations, making them ideal for generating reports, dashboards, and analytical queries. Overall, OLAP databases help organizations quickly analyze data to uncover patterns, trends, and insights for better decision-making. Compare and read user reviews of the best OLAP Databases currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is optimized for Online Analytical Processing (OLAP), offering high-speed data queries and analysis on multidimensional datasets. It provides businesses with the ability to perform complex analytical queries on large datasets, supporting deep analysis across various business dimensions. The platform’s ability to scale automatically ensures that even large OLAP workloads are handled efficiently. New users can take advantage of $300 in free credits to explore how BigQuery can handle OLAP tasks, improving the speed and accuracy of their business intelligence processes. Its serverless architecture means businesses can focus on their data rather than managing infrastructure.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Teradata VantageCloud
    Teradata VantageCloud is a comprehensive cloud-based analytics and data platform that allows businesses to unlock the full potential of their data with unparalleled speed, scalability, and operational flexibility. Engineered for enterprise-grade performance, VantageCloud supports seamless AI and machine learning integration, enabling organizations to generate real-time insights and make informed decisions faster. It offers deployment flexibility across public clouds, hybrid environments, or on-premise setups, making it highly adaptable to existing infrastructures. With features like unified data architecture, intelligent governance, and optimized cost-efficiency, VantageCloud helps businesses reduce complexity, drive innovation, and maintain a competitive edge in today’s data-driven world.
  • 3
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 4
    Presto

    Presto

    Presto Foundation

    Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes. For data engineers who struggle with managing multiple query languages and interfaces to siloed databases and storage, Presto is the fast and reliable engine that provides one simple ANSI SQL interface for all your data analytics and your open lakehouse. Different engines for different workloads means you will have to re-platform down the road. With Presto, you get 1 familar ANSI SQL language and 1 engine for your data analytics so you don't need to graduate to another lakehouse engine. Presto can be used for interactive and batch workloads, small and large amounts of data, and scales from a few to thousands of users. Presto gives you one simple ANSI SQL interface for all of your data in various siloed data systems, helping you join your data ecosystem together.
  • Previous
  • You're on page 1
  • Next