はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    Google I/O

『DataScienceCentral.com - Big Data News and Analysis』

  • 人気
  • 新着
  • すべて
  • What Comes After Deep Learning - DataScienceCentral.com

    3 users

    www.datasciencecentral.com

    Home » UncategorizedWhat Comes After Deep Learning Vincent GranvilleMarch 22, 2018 at 3:30 pm This article is by Bill Vorhies. Summary: We’re stuck.  There hasn’t been a major breakthrough in algorithms in the last year.  Here’s a survey of the leading contenders for that next major advancement. We’re stuck.  Or at least we’re plateaued.  Can anyone remember the last time a year went by without a

    • テクノロジー
    • 2020/09/13 17:27
    • 深層学習
    • techfeed
    • あとで読む
    • #DevOps for Machine Learning (#ML / #AI) - DataScienceCentral.com

      3 users

      www.datasciencecentral.com

      Home » Uncategorized#DevOps for Machine Learning (#ML / #AI) LauraEdellFebruary 2, 2019 at 7:35 am Until very recently, most organizations have seen two distinct, non-overlapping work streams when building an AI enabled application: a development path and a data science path. Often, both groups are actually building similarly scripted functional solutions using something like python or C/F#. Furth

      • テクノロジー
      • 2020/08/11 06:19
      • DevOps
      • 機械学習
      • 人工知能
      • techfeed
      • あとで読む
      • DataScienceCentral.com - Big Data News and Analysis

        21 users

        www.datasciencecentral.com

        The Economics of “Do More With Less”: Blending AI with Organizational Discipline Bill Schmarzo | September 15, 2024 at 8:14 am I hear it in nearly every customer conversation: “We must find a way to do more with less.” This modern busi... How AI is transforming marketing strategies John Lee | September 12, 2024 at 2:34 pm In 2024, artificial intelligence (AI) will likely transform the marketing in

        • テクノロジー
        • 2020/07/03 09:53
        • 機械学習
        • アルゴリズム
        • techfeed
        • あとで読む
        • 40+ Modern Tutorials Covering All Aspects of Machine Learning - DataScienceCentral.com

          26 users

          www.datasciencecentral.com

          Home » Uncategorized40+ Modern Tutorials Covering All Aspects of Machine Learning CapriGranville733December 10, 2019 at 3:30 am This list of lists contains books, notebooks, presentations, cheat sheets, and tutorials covering all aspects of data science, machine learning, deep learning, statistics, math, and more, with most documents featuring Python or R code and numerous illustrations or case st

          • テクノロジー
          • 2020/02/18 18:46
          • 機械学習
          • あとで読む
          • book
          • data
          • Automated Text Classification Using Machine Learning - DataScienceCentral.com

            11 users

            www.datasciencecentral.com

            Home » UncategorizedAutomated Text Classification Using Machine Learning ShashankGupta760January 16, 2018 at 6:30 pm Digitization has changed the way we process and analyze information. There is an exponential increase in online availability of information. From web pages to emails, science journals, e-books, learning content, news and social media are all full of textual data. The idea is to crea

            • テクノロジー
            • 2020/02/01 01:38
            • 機械学習
            • HotEntry
            • 人工知能
            • techfeed
            • あとで読む
            • Free Book: Foundations of Data Science (from Microsoft Research Lab) - DataScienceCentral.com

              3 users

              www.datasciencecentral.com

              Home » UncategorizedFree Book: Foundations of Data Science (from Microsoft Research Lab) CapriGranville733May 23, 2019 at 5:00 am By Avrim Blum, John Hopcroft, and Ravindran Kannan (2018). Computer science as an academic discipline began in the 1960s. Emphasis was on programming languages, compilers, operating systems, and the mathematical theory that supported these areas. Courses in theoretical

              • テクノロジー
              • 2019/09/02 22:47
              • Resources - DataScienceCentral.com

                3 users

                www.datasciencecentral.com

                There is no such thing as a Trained LLM Vincent GranvilleNovember 24, 2024 at 3:51 amNovember 30, 2024 at 7:48 am2 Comments What I mean here is that traditional LLMs are trained on tasks irrelevant to what they will do for the user. It’s like training a… Read More »There is no such thing as a Trained LLM

                • 世の中
                • 2019/09/02 22:47
                • New Data Science Cheat Sheet, by Maverick Lin - DataScienceCentral.com

                  5 users

                  www.datasciencecentral.com

                  Home » UncategorizedNew Data Science Cheat Sheet, by Maverick Lin CapriGranville733February 26, 2019 at 2:30 pm Below is an extract of a 10-page cheat sheet about data science, compiled by Maverick Lin. This cheatsheet is currently a reference in data science that covers basic concepts in probability, statistics, statistical learning, machine learning, deep learning, big data frameworks and SQL. T

                  • テクノロジー
                  • 2019/08/24 05:55
                  • 機械学習
                  • techfeed
                  • あとで読む
                  • Deep Learning Cheat Sheet (using Python Libraries) - DataScienceCentral.com

                    3 users

                    www.datasciencecentral.com

                    Home » UncategorizedDeep Learning Cheat Sheet (using Python Libraries) Vincent GranvilleApril 28, 2017 at 11:07 am We added one new cheat sheet to our list of data science cheat sheets: Deep Learning Cheat Sheet (using Python Libraries) Previous entries include: PySpark Cheat Sheet: Spark in Python Data Science in Python: Pandas Cheat Sheet Cheat Sheet: Python Basics For Data Science A Cheat Sheet

                    • テクノロジー
                    • 2017/04/29 13:13
                    • 20 Cheat Sheets: Python, ML, Data Science, R, and More - DataScienceCentral.com

                      3 users

                      www.datasciencecentral.com

                      Home » Uncategorized20 Cheat Sheets: Python, ML, Data Science, R, and More Vincent GranvilleNovember 11, 2018 at 4:00 am This resource is part of a series on specific topics related to data science: regression, clustering, neural networks, deep learning, Hadoop, decision trees, ensembles, correlation, outliers, regression Python, R, Tensorflow, SVM, data reduction, feature selection, experimental

                      • テクノロジー
                      • 2017/04/20 10:14
                      • techfeed
                      • Python
                      • あとで読む
                      • Google releases massive visual databases for machine learning - DataScienceCentral.com

                        4 users

                        www.datasciencecentral.com

                        Home » UncategorizedGoogle releases massive visual databases for machine learning EmmanuelleRieufJanuary 2, 2017 at 5:00 am This article was written by Richard Lawler. Richard’s been tech obsessed since first laying hands on an Atari joystick. It seems like we hear about a new breakthrough using machine learning nearly every day, but it’s not easy. In order to fine-tune algorithms that recognize a

                        • テクノロジー
                        • 2017/04/13 12:37
                        • ML
                        • 機械学習
                        • data
                        • google
                        • Book: Python Data Science Handbook - DataScienceCentral.com

                          9 users

                          www.datasciencecentral.com

                          Home » UncategorizedBook: Python Data Science Handbook EmmanuelleRieufJuly 1, 2017 at 5:00 am Jupyter notebook content for my OReilly book, the Python Data Science Handbook. This repository contains the full listing of IPython notebooks used to create the book, including all text and code. The code was written and tested with Python 3.5, though most (but not all) snippets will work correctly in Py

                          • テクノロジー
                          • 2017/03/23 09:41
                          • Python
                          • あとで読む
                          • Common Probability Distributions: The Data Scientist’s Crib Sheet - DataScienceCentral.com

                            3 users

                            www.datasciencecentral.com

                            Home » UncategorizedCommon Probability Distributions: The Data Scientist’s Crib Sheet EmmanuelleRieufJanuary 22, 2017 at 6:30 am This post was written by Sean Owen. Data scientists have hundreds of probability distributions from which to choose. Where to start? Data science, whatever it may be, remains a big deal.  “A data scientist is better at statistics than any software engineer,” you may over

                            • テクノロジー
                            • 2017/03/21 09:01
                            • 140 Machine Learning Formulas - DataScienceCentral.com

                              5 users

                              www.datasciencecentral.com

                              Home » Uncategorized140 Machine Learning Formulas Vincent GranvilleJanuary 25, 2017 at 1:30 pm By Rubens Zimbres. Rubens is a Data Scientist, PhD in Business Administration, developing Machine Learning, Deep Learning, NLP and AI models using R, Python and Wolfram Mathematica. Click here to check his Github page. Extract from the PDF document This is a 17 page PDF document featuring a collection of

                              • テクノロジー
                              • 2017/01/31 00:23
                              • 機械学習
                              • techfeed
                              • Python
                              • あとで読む
                              • When Does Deep Learning Work Better Than SVMs or Random Forests? – Data Science Central

                                8 users

                                www.datasciencecentral.com

                                When Does Deep Learning Work Better Than SVMs or Random Forests? Guest blog by Sebastian Raschka, originally posted here. If we tackle a supervised learning problem, my advice is to start with the simplest hypothesis space first. I.e., try a linear model such as logistic regression. If this doesn't work "well" (i.e., it doesn't meet our expectation or performance criterion that we defined earlier)

                                • 暮らし
                                • 2016/12/03 10:39
                                • あとで読む
                                • 40 Techniques Used by Data Scientists - Data Science Central

                                  3 users

                                  www.datasciencecentral.com

                                  Home » Uncategorized40 Techniques Used by Data Scientists Vincent GranvilleApril 7, 2016 at 6:00 am These techniques cover most of what data scientists and related practitioners are using in their daily activities, whether they use solutions offered by a vendor, or whether they design proprietary tools. When you click on any of the 40 links below, you will find a selection of articles related to t

                                  • テクノロジー
                                  • 2016/08/04 12:18
                                  • 12 Algorithms Every Data Scientist Should Know - DataScienceCentral.com

                                    4 users

                                    www.datasciencecentral.com

                                    Home » Uncategorized12 Algorithms Every Data Scientist Should Know EmmanuelleRieufSeptember 6, 2016 at 5:30 am A rather comprehensive list of algorithms can be found here. Many are posted and available for free on Github or Stackexchange. Algoritmia provides developers with over 800 algorithms, though you have to pay a fee to access them. You can find the original article, here. For other articles

                                    • テクノロジー
                                    • 2016/06/30 20:08
                                    • あとで読む
                                    • Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Python, SAS

                                      3 users

                                      www.datasciencecentral.com

                                      Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Python, SAS Here we ask you to identify which tool was used to produce the following 18 charts: 4 were done with R, 3 with SPSS, 5 with Excel, 2 with Tableau, 1 with Matlab, 1 with Python, 1 with SAS, and 1 with JavaScript. The solution, including for each chart a link to the webpage where it is explained in detail (many times with sou

                                      • テクノロジー
                                      • 2016/05/26 22:37
                                      • 15 Deep Learning Libraries - DataScienceCentral.com

                                        7 users

                                        www.datasciencecentral.com

                                        Home » Uncategorized15 Deep Learning Libraries TeglorSeptember 9, 2015 at 4:30 pm Here are 15 libraries in various languages to help implement your deep learning algorithm. Theano is a python library for defining and evaluating mathematical expressions with numerical arrays. Theano supports related frameworks such as Keras, Pylearn2, Lasagne & Blocks. Caffe is a deep learning framework made with e

                                        • テクノロジー
                                        • 2016/03/20 05:05
                                        • 機械学習
                                        • あとで読む
                                        • AirBnB New User Bookings, Kaggle Winner's Interview: 3rd Place

                                          3 users

                                          www.datasciencecentral.com

                                          AirBnB New User Bookings, Kaggle Winner's Interview: 3rd Place AirBnB New User Bookings was a popular recruiting competition that challenged Kagglers to predict the first country where a new user would book travel. This was the first recruiting competition on Kaggle with scripts enabled. AirBnB encouraged participants to prove their chops through their collaboration and code sharing in addition to

                                          • 暮らし
                                          • 2016/03/12 18:30
                                          • Great Github list of public data sets

                                            5 users

                                            www.datasciencecentral.com

                                            Many data set resources have been published on DSC, both big and little data. Some associated with our data science apprenticeship. A list can be found here. Below is a repository published on Github, originally posted here. Source for picture: click here Agriculture U.S. Department of Agriculture's PLANTS Database Biology 1000 Genomes Collaborative Research in Computational Neuroscience (CRCNS) G

                                            • テクノロジー
                                            • 2016/01/31 22:06
                                            • dataset
                                            • science
                                            • 資料
                                            • あとで読む
                                            • DataScienceCentral.com - Big Data News and Analysis

                                              14 users

                                              www.datasciencecentral.com

                                              Geometric deep learning: AI beyond text & images Kevin Vu | April 23, 2025 at 10:22 am Discover how Geometric Deep Learning revolutionizes AI by processing complex, non-Euclidean data structures, enabling br... What’s wrong with data-based decision-making? Tania Kalambet | April 23, 2025 at 10:11 am Whether launching a new product or changing an existing one, decision-makers are relying on data mo

                                              • テクノロジー
                                              • 2016/01/21 16:52
                                              • data science
                                              • book
                                              • math
                                              • data
                                              • books
                                              • Dangers of Using RMSE: Netflix Case Study

                                                4 users

                                                www.datasciencecentral.com

                                                RMSE or Root Mean Squared Error is a widely used method to evaluate the effectiveness of a model. Mike De Waard has one of the simplest and clearest explanations on how it works: The Root Mean Squared Error (RMSE or RMSD where D stands for deviation) is the square root of the mean of the squared differences between the actual value and predicted value. As this is might be hard to grasp, I'll expla

                                                • テクノロジー
                                                • 2015/10/10 03:33
                                                • 機械学習
                                                • あとで読む
                                                • Great list of resources: data science, visualization, machine learning, big data - DataScienceCentral.com

                                                  3 users

                                                  www.datasciencecentral.com

                                                  HomeGreat list of resources: data science, visualization, machine learning, big data Vincent GranvilleDecember 17, 2016 at 6:00 pm Fantastic resource created by Andrea Motosi. I’ve only included the 5 categories that are the most relevant to our audience, though it has 31 categories total, including a few on distributed systems and Hadoop. Click here to view the 31 categories. You might also want

                                                  • テクノロジー
                                                  • 2014/09/29 05:35
                                                  • How to Become a Data Scientist on your Own - DataScienceCentral.com

                                                    3 users

                                                    www.datasciencecentral.com

                                                    Home » UncategorizedHow to Become a Data Scientist on your Own Vincent GranvilleOctober 25, 2019 at 2:25 am1 Comment Originally posted by Zeeshan Usmani in May 2015. Big Data, Data Sciences, and Predictive Analytics are the talk of the town and it doesn’t matter which town you are referring to, it’s everywhere, from the White House hiring DJ Patil as the first chief data scientist to the United Na

                                                    • テクノロジー
                                                    • 2014/08/29 18:07
                                                    • あとで読む
                                                    • Machine Learning in Parallel with Support Vector Machines, Generalized Linear Models, and Adaptive Boosting – Data Science Central

                                                      3 users

                                                      www.datasciencecentral.com

                                                      Machine Learning in Parallel with Support Vector Machines, Generalized Linear Models, and Adaptive Boosting Introduction This article describes methods for machine learning using bootstrap samples and parallel processing to model very large volumes of data in short periods of time. The R programming language includes many packages for machine learning different types of data. Three of these packag

                                                      • テクノロジー
                                                      • 2014/03/24 01:55
                                                      • MachineLearning
                                                      • R
                                                      • DataScienceCentral.com - Big Data News and Analysis

                                                        9 users

                                                        www.datasciencecentral.com

                                                        Stay ahead of the sales curve with AI-assisted Salesforce integration Anas Baig | May 19, 2025 at 4:52 pm Any organization with Salesforce in its SaaS sprawl must find a way to integrate it with other systems. For some, this i... Generative AI in software development: Does faster code come at the cost of quality? Devansh Bansal | May 16, 2025 at 4:39 pm From creating comprehensive essays to writin

                                                        • テクノロジー
                                                        • 2014/01/25 09:59
                                                        • python
                                                        • DataScienceCentral.com - Big Data News and Analysis

                                                          25 users

                                                          www.datasciencecentral.com

                                                          New Book: 0 and 1 – From Elemental Math to Quantum AI Vincent Granville | May 11, 2025 at 11:41 pm This book opens up new research areas in theoretical and computational number theory, numerical approximation, dynamical... The power of distributed data management for edge computing architectures Edward Nick | May 6, 2025 at 9:37 am A profound transformation occurs as organizations generate unprece

                                                          • テクノロジー
                                                          • 2009/03/02 23:02
                                                          • datamining

                                                          このページはまだ
                                                          ブックマークされていません

                                                          このページを最初にブックマークしてみませんか?

                                                          『DataScienceCentral.com - Big Data News and Analysis』の新着エントリーを見る

                                                          キーボードショートカット一覧

                                                          j次のブックマーク

                                                          k前のブックマーク

                                                          lあとで読む

                                                          eコメント一覧を開く

                                                          oページを開く

                                                          はてなブックマーク

                                                          • 総合
                                                          • 一般
                                                          • 世の中
                                                          • 政治と経済
                                                          • 暮らし
                                                          • 学び
                                                          • テクノロジー
                                                          • エンタメ
                                                          • アニメとゲーム
                                                          • おもしろ
                                                          • アプリ・拡張機能
                                                          • 開発ブログ
                                                          • ヘルプ
                                                          • お問い合わせ
                                                          • ガイドライン
                                                          • 利用規約
                                                          • プライバシーポリシー
                                                          • 利用者情報の外部送信について
                                                          • ガイドライン
                                                          • 利用規約
                                                          • プライバシーポリシー
                                                          • 利用者情報の外部送信について

                                                          公式Twitter

                                                          • 公式アカウント
                                                          • ホットエントリー

                                                          はてなのサービス

                                                          • はてなブログ
                                                          • はてなブログPro
                                                          • 人力検索はてな
                                                          • はてなブログ タグ
                                                          • はてなニュース
                                                          • ソレドコ
                                                          • App Storeからダウンロード
                                                          • Google Playで手に入れよう
                                                          Copyright © 2005-2025 Hatena. All Rights Reserved.
                                                          設定を変更しましたx