IMPROVING QUANTIZED KNOWLEDGE DISTILLATION VIA SIGNAL PROPAGATION ANALYSIS FOR LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《OH! WE FREEZE: IMPROVING QUANTIZED KNOWLEDGE DISTILLATION VIA SIGNAL PROPAGATION ANALYSIS FOR LARGE LANGUAGE MODELS》的翻译。

哦!我们冻结:通过信号传播分析改进大型语言模型的量化知识蒸馏

摘要

大型生成模型,如大型语言模型(LLM)和扩散模型,分别彻底改变了NLP和计算机视觉领域。然而,它们的推理速度慢、计算量和内存需求高,使得将它们部署在边缘设备上具有挑战性。在这项研究中,我们提出了一种轻量级的量化感知微调技术,使用知识蒸馏(KD-QAT)来提高4位加权量化LLM的性能,使用常见的数据集来实现流行的语言用例,即设备聊天应用程序。为了改进这种微调范式,作为主要贡献,我们通过实证研究训练过程中的梯度传播来深入了解KD-QAT的稳定性,以更好地理解基于KDQAT的方法对低位量化误差的脆弱性。基于我们的见解,我们提出了ov-freeze,这是一种稳定KD-QAT过程的简单技术。最后,我们在4位量化级别上对流行的7B LLaMAv2 Chat模型进行了实验,并证明ov-freeze导致了接近浮点的精度性能,即在常识推理基准上的精度损失小于0.7%。

1 引言

2 相关工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值