LLVM 20.0.0git
ValueMapper.cpp
Go to the documentation of this file.
1//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the MapValue function, which is shared by various parts of
10// the lib/Transforms/Utils library.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
20#include "llvm/IR/Argument.h"
21#include "llvm/IR/BasicBlock.h"
22#include "llvm/IR/Constant.h"
23#include "llvm/IR/Constants.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalIFunc.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
40#include "llvm/Support/Debug.h"
41#include <cassert>
42#include <limits>
43#include <memory>
44#include <utility>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "value-mapper"
49
50// Out of line method to get vtable etc for class.
51void ValueMapTypeRemapper::anchor() {}
52void ValueMaterializer::anchor() {}
53
54namespace {
55
56/// A basic block used in a BlockAddress whose function body is not yet
57/// materialized.
58struct DelayedBasicBlock {
59 BasicBlock *OldBB;
60 std::unique_ptr<BasicBlock> TempBB;
61
62 DelayedBasicBlock(const BlockAddress &Old)
63 : OldBB(Old.getBasicBlock()),
64 TempBB(BasicBlock::Create(Old.getContext())) {}
65};
66
67struct WorklistEntry {
68 enum EntryKind {
69 MapGlobalInit,
70 MapAppendingVar,
71 MapAliasOrIFunc,
73 };
74 struct GVInitTy {
77 };
78 struct AppendingGVTy {
80 Constant *InitPrefix;
81 };
82 struct AliasOrIFuncTy {
83 GlobalValue *GV;
85 };
86
87 unsigned Kind : 2;
88 unsigned MCID : 29;
89 unsigned AppendingGVIsOldCtorDtor : 1;
90 unsigned AppendingGVNumNewMembers;
91 union {
92 GVInitTy GVInit;
93 AppendingGVTy AppendingGV;
94 AliasOrIFuncTy AliasOrIFunc;
95 Function *RemapF;
96 } Data;
97};
98
99struct MappingContext {
101 ValueMaterializer *Materializer = nullptr;
102
103 /// Construct a MappingContext with a value map and materializer.
104 explicit MappingContext(ValueToValueMapTy &VM,
105 ValueMaterializer *Materializer = nullptr)
106 : VM(&VM), Materializer(Materializer) {}
107};
108
109class Mapper {
110 friend class MDNodeMapper;
111
112#ifndef NDEBUG
113 DenseSet<GlobalValue *> AlreadyScheduled;
114#endif
115
117 ValueMapTypeRemapper *TypeMapper;
118 unsigned CurrentMCID = 0;
122 SmallVector<Constant *, 16> AppendingInits;
123 const MetadataSetTy *IdentityMD;
124
125public:
126 Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
127 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer,
128 const MetadataSetTy *IdentityMD)
129 : Flags(Flags), TypeMapper(TypeMapper),
130 MCs(1, MappingContext(VM, Materializer)), IdentityMD(IdentityMD) {}
131
132 /// ValueMapper should explicitly call \a flush() before destruction.
133 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
134
135 bool hasWorkToDo() const { return !Worklist.empty(); }
136
137 unsigned
138 registerAlternateMappingContext(ValueToValueMapTy &VM,
139 ValueMaterializer *Materializer = nullptr) {
140 MCs.push_back(MappingContext(VM, Materializer));
141 return MCs.size() - 1;
142 }
143
144 void addFlags(RemapFlags Flags);
145
146 void remapGlobalObjectMetadata(GlobalObject &GO);
147
148 Value *mapValue(const Value *V);
149 void remapInstruction(Instruction *I);
150 void remapFunction(Function &F);
151 void remapDbgRecord(DbgRecord &DVR);
152
153 Constant *mapConstant(const Constant *C) {
154 return cast_or_null<Constant>(mapValue(C));
155 }
156
157 /// Map metadata.
158 ///
159 /// Find the mapping for MD. Guarantees that the return will be resolved
160 /// (not an MDNode, or MDNode::isResolved() returns true).
161 Metadata *mapMetadata(const Metadata *MD);
162
163 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
164 unsigned MCID);
165 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
166 bool IsOldCtorDtor,
167 ArrayRef<Constant *> NewMembers,
168 unsigned MCID);
169 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
170 unsigned MCID);
171 void scheduleRemapFunction(Function &F, unsigned MCID);
172
173 void flush();
174
175private:
176 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
177 bool IsOldCtorDtor,
178 ArrayRef<Constant *> NewMembers);
179
180 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
181 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
182
183 Value *mapBlockAddress(const BlockAddress &BA);
184
185 /// Map metadata that doesn't require visiting operands.
186 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
187
188 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
189 Metadata *mapToSelf(const Metadata *MD);
190};
191
192class MDNodeMapper {
193 Mapper &M;
194
195 /// Data about a node in \a UniquedGraph.
196 struct Data {
197 bool HasChanged = false;
198 unsigned ID = std::numeric_limits<unsigned>::max();
199 TempMDNode Placeholder;
200 };
201
202 /// A graph of uniqued nodes.
203 struct UniquedGraph {
205 SmallVector<MDNode *, 16> POT; // Post-order traversal.
206
207 /// Propagate changed operands through the post-order traversal.
208 ///
209 /// Iteratively update \a Data::HasChanged for each node based on \a
210 /// Data::HasChanged of its operands, until fixed point.
211 void propagateChanges();
212
213 /// Get a forward reference to a node to use as an operand.
214 Metadata &getFwdReference(MDNode &Op);
215 };
216
217 /// Worklist of distinct nodes whose operands need to be remapped.
218 SmallVector<MDNode *, 16> DistinctWorklist;
219
220 // Storage for a UniquedGraph.
222 SmallVector<MDNode *, 16> POTStorage;
223
224public:
225 MDNodeMapper(Mapper &M) : M(M) {}
226
227 /// Map a metadata node (and its transitive operands).
228 ///
229 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
230 /// algorithm handles distinct nodes and uniqued node subgraphs using
231 /// different strategies.
232 ///
233 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
234 /// using \a mapDistinctNode(). Their mapping can always be computed
235 /// immediately without visiting operands, even if their operands change.
236 ///
237 /// The mapping for uniqued nodes depends on whether their operands change.
238 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
239 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
240 /// added to \a DistinctWorklist with \a mapDistinctNode().
241 ///
242 /// After mapping \c N itself, this function remaps the operands of the
243 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
244 /// N has been mapped.
245 Metadata *map(const MDNode &N);
246
247private:
248 /// Map a top-level uniqued node and the uniqued subgraph underneath it.
249 ///
250 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
251 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
252 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
253 /// operands uses the identity mapping.
254 ///
255 /// The algorithm works as follows:
256 ///
257 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
258 /// save the post-order traversal in the given \a UniquedGraph, tracking
259 /// nodes' operands change.
260 ///
261 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
262 /// through the \a UniquedGraph until fixed point, following the rule
263 /// that if a node changes, any node that references must also change.
264 ///
265 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
266 /// (referencing new operands) where necessary.
267 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
268
269 /// Try to map the operand of an \a MDNode.
270 ///
271 /// If \c Op is already mapped, return the mapping. If it's not an \a
272 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
273 /// return the result of \a mapDistinctNode().
274 ///
275 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode.
276 /// \post getMappedOp(Op) only returns std::nullopt if this returns
277 /// std::nullopt.
278 std::optional<Metadata *> tryToMapOperand(const Metadata *Op);
279
280 /// Map a distinct node.
281 ///
282 /// Return the mapping for the distinct node \c N, saving the result in \a
283 /// DistinctWorklist for later remapping.
284 ///
285 /// \pre \c N is not yet mapped.
286 /// \pre \c N.isDistinct().
287 MDNode *mapDistinctNode(const MDNode &N);
288
289 /// Get a previously mapped node.
290 std::optional<Metadata *> getMappedOp(const Metadata *Op) const;
291
292 /// Create a post-order traversal of an unmapped uniqued node subgraph.
293 ///
294 /// This traverses the metadata graph deeply enough to map \c FirstN. It
295 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
296 /// metadata that has already been mapped will not be part of the POT.
297 ///
298 /// Each node that has a changed operand from outside the graph (e.g., a
299 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
300 /// is marked with \a Data::HasChanged.
301 ///
302 /// \return \c true if any nodes in \c G have \a Data::HasChanged.
303 /// \post \c G.POT is a post-order traversal ending with \c FirstN.
304 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
305 /// to change because of operands outside the graph.
306 bool createPOT(UniquedGraph &G, const MDNode &FirstN);
307
308 /// Visit the operands of a uniqued node in the POT.
309 ///
310 /// Visit the operands in the range from \c I to \c E, returning the first
311 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
312 /// where to continue the loop through the operands.
313 ///
314 /// This sets \c HasChanged if any of the visited operands change.
315 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
316 MDNode::op_iterator E, bool &HasChanged);
317
318 /// Map all the nodes in the given uniqued graph.
319 ///
320 /// This visits all the nodes in \c G in post-order, using the identity
321 /// mapping or creating a new node depending on \a Data::HasChanged.
322 ///
323 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for
324 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true
325 /// for a node in \c G iff any of its operands have changed. \post \a
326 /// getMappedOp() returns the mapped node for every node in \c G.
327 void mapNodesInPOT(UniquedGraph &G);
328
329 /// Remap a node's operands using the given functor.
330 ///
331 /// Iterate through the operands of \c N and update them in place using \c
332 /// mapOperand.
333 ///
334 /// \pre N.isDistinct() or N.isTemporary().
335 template <class OperandMapper>
336 void remapOperands(MDNode &N, OperandMapper mapOperand);
337};
338
339} // end anonymous namespace
340
341Value *Mapper::mapValue(const Value *V) {
342 ValueToValueMapTy::iterator I = getVM().find(V);
343
344 // If the value already exists in the map, use it.
345 if (I != getVM().end()) {
346 assert(I->second && "Unexpected null mapping");
347 return I->second;
348 }
349
350 // If we have a materializer and it can materialize a value, use that.
351 if (auto *Materializer = getMaterializer()) {
352 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
353 getVM()[V] = NewV;
354 return NewV;
355 }
356 }
357
358 // Global values do not need to be seeded into the VM if they
359 // are using the identity mapping.
360 if (isa<GlobalValue>(V)) {
362 return nullptr;
363 return getVM()[V] = const_cast<Value *>(V);
364 }
365
366 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
367 // Inline asm may need *type* remapping.
368 FunctionType *NewTy = IA->getFunctionType();
369 if (TypeMapper) {
370 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
371
372 if (NewTy != IA->getFunctionType())
373 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
374 IA->hasSideEffects(), IA->isAlignStack(),
375 IA->getDialect(), IA->canThrow());
376 }
377
378 return getVM()[V] = const_cast<Value *>(V);
379 }
380
381 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
382 const Metadata *MD = MDV->getMetadata();
383
384 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
385 // Look through to grab the local value.
386 if (Value *LV = mapValue(LAM->getValue())) {
387 if (V == LAM->getValue())
388 return const_cast<Value *>(V);
389 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
390 }
391
392 // FIXME: always return nullptr once Verifier::verifyDominatesUse()
393 // ensures metadata operands only reference defined SSA values.
394 return (Flags & RF_IgnoreMissingLocals)
395 ? nullptr
396 : MetadataAsValue::get(V->getContext(),
397 MDTuple::get(V->getContext(), {}));
398 }
399 if (auto *AL = dyn_cast<DIArgList>(MD)) {
401 for (auto *VAM : AL->getArgs()) {
402 // Map both Local and Constant VAMs here; they will both ultimately
403 // be mapped via mapValue. The exceptions are constants when we have no
404 // module level changes and locals when they have no existing mapped
405 // value and RF_IgnoreMissingLocals is set; these have identity
406 // mappings.
407 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) {
408 MappedArgs.push_back(VAM);
409 } else if (Value *LV = mapValue(VAM->getValue())) {
410 MappedArgs.push_back(
411 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV));
412 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) {
413 MappedArgs.push_back(VAM);
414 } else {
415 // If we cannot map the value, set the argument as poison.
417 PoisonValue::get(VAM->getValue()->getType())));
418 }
419 }
420 return MetadataAsValue::get(V->getContext(),
421 DIArgList::get(V->getContext(), MappedArgs));
422 }
423
424 // If this is a module-level metadata and we know that nothing at the module
425 // level is changing, then use an identity mapping.
426 if (Flags & RF_NoModuleLevelChanges)
427 return getVM()[V] = const_cast<Value *>(V);
428
429 // Map the metadata and turn it into a value.
430 auto *MappedMD = mapMetadata(MD);
431 if (MD == MappedMD)
432 return getVM()[V] = const_cast<Value *>(V);
433 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
434 }
435
436 // Okay, this either must be a constant (which may or may not be mappable) or
437 // is something that is not in the mapping table.
438 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
439 if (!C)
440 return nullptr;
441
442 if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
443 return mapBlockAddress(*BA);
444
445 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) {
446 auto *Val = mapValue(E->getGlobalValue());
447 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
448 if (GV)
449 return getVM()[E] = DSOLocalEquivalent::get(GV);
450
451 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases());
452 Type *NewTy = E->getType();
453 if (TypeMapper)
454 NewTy = TypeMapper->remapType(NewTy);
455 return getVM()[E] = llvm::ConstantExpr::getBitCast(
456 DSOLocalEquivalent::get(Func), NewTy);
457 }
458
459 if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
460 auto *Val = mapValue(NC->getGlobalValue());
461 GlobalValue *GV = cast<GlobalValue>(Val);
462 return getVM()[NC] = NoCFIValue::get(GV);
463 }
464
465 auto mapValueOrNull = [this](Value *V) {
466 auto Mapped = mapValue(V);
467 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
468 "Unexpected null mapping for constant operand without "
469 "NullMapMissingGlobalValues flag");
470 return Mapped;
471 };
472
473 // Otherwise, we have some other constant to remap. Start by checking to see
474 // if all operands have an identity remapping.
475 unsigned OpNo = 0, NumOperands = C->getNumOperands();
476 Value *Mapped = nullptr;
477 for (; OpNo != NumOperands; ++OpNo) {
478 Value *Op = C->getOperand(OpNo);
479 Mapped = mapValueOrNull(Op);
480 if (!Mapped)
481 return nullptr;
482 if (Mapped != Op)
483 break;
484 }
485
486 // See if the type mapper wants to remap the type as well.
487 Type *NewTy = C->getType();
488 if (TypeMapper)
489 NewTy = TypeMapper->remapType(NewTy);
490
491 // If the result type and all operands match up, then just insert an identity
492 // mapping.
493 if (OpNo == NumOperands && NewTy == C->getType())
494 return getVM()[V] = C;
495
496 // Okay, we need to create a new constant. We've already processed some or
497 // all of the operands, set them all up now.
499 Ops.reserve(NumOperands);
500 for (unsigned j = 0; j != OpNo; ++j)
501 Ops.push_back(cast<Constant>(C->getOperand(j)));
502
503 // If one of the operands mismatch, push it and the other mapped operands.
504 if (OpNo != NumOperands) {
505 Ops.push_back(cast<Constant>(Mapped));
506
507 // Map the rest of the operands that aren't processed yet.
508 for (++OpNo; OpNo != NumOperands; ++OpNo) {
509 Mapped = mapValueOrNull(C->getOperand(OpNo));
510 if (!Mapped)
511 return nullptr;
512 Ops.push_back(cast<Constant>(Mapped));
513 }
514 }
515 Type *NewSrcTy = nullptr;
516 if (TypeMapper)
517 if (auto *GEPO = dyn_cast<GEPOperator>(C))
518 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
519
520 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
521 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
522 if (isa<ConstantArray>(C))
523 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
524 if (isa<ConstantStruct>(C))
525 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
526 if (isa<ConstantVector>(C))
527 return getVM()[V] = ConstantVector::get(Ops);
528 // If this is a no-operand constant, it must be because the type was remapped.
529 if (isa<PoisonValue>(C))
530 return getVM()[V] = PoisonValue::get(NewTy);
531 if (isa<UndefValue>(C))
532 return getVM()[V] = UndefValue::get(NewTy);
533 if (isa<ConstantAggregateZero>(C))
534 return getVM()[V] = ConstantAggregateZero::get(NewTy);
535 if (isa<ConstantTargetNone>(C))
536 return getVM()[V] = Constant::getNullValue(NewTy);
537 assert(isa<ConstantPointerNull>(C));
538 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
539}
540
541void Mapper::remapDbgRecord(DbgRecord &DR) {
542 // Remap DILocations.
543 auto *MappedDILoc = mapMetadata(DR.getDebugLoc());
544 DR.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc)));
545
546 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
547 // Remap labels.
548 DLR->setLabel(cast<DILabel>(mapMetadata(DLR->getLabel())));
549 return;
550 }
551
552 DbgVariableRecord &V = cast<DbgVariableRecord>(DR);
553 // Remap variables.
554 auto *MappedVar = mapMetadata(V.getVariable());
555 V.setVariable(cast<DILocalVariable>(MappedVar));
556
557 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals;
558
559 if (V.isDbgAssign()) {
560 auto *NewAddr = mapValue(V.getAddress());
561 if (!IgnoreMissingLocals && !NewAddr)
562 V.setKillAddress();
563 else if (NewAddr)
564 V.setAddress(NewAddr);
565 V.setAssignId(cast<DIAssignID>(mapMetadata(V.getAssignID())));
566 }
567
568 // Find Value operands and remap those.
569 SmallVector<Value *, 4> Vals(V.location_ops());
571 for (Value *Val : Vals)
572 NewVals.push_back(mapValue(Val));
573
574 // If there are no changes to the Value operands, finished.
575 if (Vals == NewVals)
576 return;
577
578 // Otherwise, do some replacement.
579 if (!IgnoreMissingLocals && llvm::is_contained(NewVals, nullptr)) {
580 V.setKillLocation();
581 } else {
582 // Either we have all non-empty NewVals, or we're permitted to ignore
583 // missing locals.
584 for (unsigned int I = 0; I < Vals.size(); ++I)
585 if (NewVals[I])
586 V.replaceVariableLocationOp(I, NewVals[I]);
587 }
588}
589
590Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
591 Function *F = cast<Function>(mapValue(BA.getFunction()));
592
593 // F may not have materialized its initializer. In that case, create a
594 // dummy basic block for now, and replace it once we've materialized all
595 // the initializers.
596 BasicBlock *BB;
597 if (F->empty()) {
598 DelayedBBs.push_back(DelayedBasicBlock(BA));
599 BB = DelayedBBs.back().TempBB.get();
600 } else {
601 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
602 }
603
604 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
605}
606
607Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
608 getVM().MD()[Key].reset(Val);
609 return Val;
610}
611
612Metadata *Mapper::mapToSelf(const Metadata *MD) {
613 return mapToMetadata(MD, const_cast<Metadata *>(MD));
614}
615
616std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
617 if (!Op)
618 return nullptr;
619
620 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
621#ifndef NDEBUG
622 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
623 assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
624 M.getVM().getMappedMD(Op)) &&
625 "Expected Value to be memoized");
626 else
627 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
628 "Expected result to be memoized");
629#endif
630 return *MappedOp;
631 }
632
633 const MDNode &N = *cast<MDNode>(Op);
634 if (N.isDistinct())
635 return mapDistinctNode(N);
636 return std::nullopt;
637}
638
639MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
640 assert(N.isDistinct() && "Expected a distinct node");
641 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
642 Metadata *NewM = nullptr;
643
644 if (M.Flags & RF_ReuseAndMutateDistinctMDs) {
645 NewM = M.mapToSelf(&N);
646 } else {
647 NewM = MDNode::replaceWithDistinct(N.clone());
648 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n"
649 << "To " << *NewM << "\n\n");
650 M.mapToMetadata(&N, NewM);
651 }
652 DistinctWorklist.push_back(cast<MDNode>(NewM));
653
654 return DistinctWorklist.back();
655}
656
658 Value *MappedV) {
659 if (CMD.getValue() == MappedV)
660 return const_cast<ConstantAsMetadata *>(&CMD);
661 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
662}
663
664std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
665 if (!Op)
666 return nullptr;
667
668 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
669 return *MappedOp;
670
671 if (isa<MDString>(Op))
672 return const_cast<Metadata *>(Op);
673
674 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
675 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
676
677 return std::nullopt;
678}
679
680Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
681 auto Where = Info.find(&Op);
682 assert(Where != Info.end() && "Expected a valid reference");
683
684 auto &OpD = Where->second;
685 if (!OpD.HasChanged)
686 return Op;
687
688 // Lazily construct a temporary node.
689 if (!OpD.Placeholder)
690 OpD.Placeholder = Op.clone();
691
692 return *OpD.Placeholder;
693}
694
695template <class OperandMapper>
696void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
697 assert(!N.isUniqued() && "Expected distinct or temporary nodes");
698 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
699 Metadata *Old = N.getOperand(I);
700 Metadata *New = mapOperand(Old);
701 if (Old != New)
702 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in "
703 << N << "\n");
704
705 if (Old != New)
706 N.replaceOperandWith(I, New);
707 }
708}
709
710namespace {
711
712/// An entry in the worklist for the post-order traversal.
713struct POTWorklistEntry {
714 MDNode *N; ///< Current node.
715 MDNode::op_iterator Op; ///< Current operand of \c N.
716
717 /// Keep a flag of whether operands have changed in the worklist to avoid
718 /// hitting the map in \a UniquedGraph.
719 bool HasChanged = false;
720
721 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
722};
723
724} // end anonymous namespace
725
726bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
727 assert(G.Info.empty() && "Expected a fresh traversal");
728 assert(FirstN.isUniqued() && "Expected uniqued node in POT");
729
730 // Construct a post-order traversal of the uniqued subgraph under FirstN.
731 bool AnyChanges = false;
733 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
734 (void)G.Info[&FirstN];
735 while (!Worklist.empty()) {
736 // Start or continue the traversal through the this node's operands.
737 auto &WE = Worklist.back();
738 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
739 // Push a new node to traverse first.
740 Worklist.push_back(POTWorklistEntry(*N));
741 continue;
742 }
743
744 // Push the node onto the POT.
745 assert(WE.N->isUniqued() && "Expected only uniqued nodes");
746 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
747 auto &D = G.Info[WE.N];
748 AnyChanges |= D.HasChanged = WE.HasChanged;
749 D.ID = G.POT.size();
750 G.POT.push_back(WE.N);
751
752 // Pop the node off the worklist.
753 Worklist.pop_back();
754 }
755 return AnyChanges;
756}
757
758MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
759 MDNode::op_iterator E, bool &HasChanged) {
760 while (I != E) {
761 Metadata *Op = *I++; // Increment even on early return.
762 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
763 // Check if the operand changes.
764 HasChanged |= Op != *MappedOp;
765 continue;
766 }
767
768 // A uniqued metadata node.
769 MDNode &OpN = *cast<MDNode>(Op);
770 assert(OpN.isUniqued() &&
771 "Only uniqued operands cannot be mapped immediately");
772 if (G.Info.insert(std::make_pair(&OpN, Data())).second)
773 return &OpN; // This is a new one. Return it.
774 }
775 return nullptr;
776}
777
778void MDNodeMapper::UniquedGraph::propagateChanges() {
779 bool AnyChanges;
780 do {
781 AnyChanges = false;
782 for (MDNode *N : POT) {
783 auto &D = Info[N];
784 if (D.HasChanged)
785 continue;
786
787 if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
788 auto Where = Info.find(Op);
789 return Where != Info.end() && Where->second.HasChanged;
790 }))
791 continue;
792
793 AnyChanges = D.HasChanged = true;
794 }
795 } while (AnyChanges);
796}
797
798void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
799 // Construct uniqued nodes, building forward references as necessary.
800 SmallVector<MDNode *, 16> CyclicNodes;
801 for (auto *N : G.POT) {
802 auto &D = G.Info[N];
803 if (!D.HasChanged) {
804 // The node hasn't changed.
805 M.mapToSelf(N);
806 continue;
807 }
808
809 // Remember whether this node had a placeholder.
810 bool HadPlaceholder(D.Placeholder);
811
812 // Clone the uniqued node and remap the operands.
813 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
814 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
815 if (std::optional<Metadata *> MappedOp = getMappedOp(Old))
816 return *MappedOp;
817 (void)D;
818 assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
819 return &G.getFwdReference(*cast<MDNode>(Old));
820 });
821
822 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
823 if (N && NewN && N != NewN) {
824 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n"
825 << "To " << *NewN << "\n\n");
826 }
827
828 M.mapToMetadata(N, NewN);
829
830 // Nodes that were referenced out of order in the POT are involved in a
831 // uniquing cycle.
832 if (HadPlaceholder)
833 CyclicNodes.push_back(NewN);
834 }
835
836 // Resolve cycles.
837 for (auto *N : CyclicNodes)
838 if (!N->isResolved())
839 N->resolveCycles();
840}
841
842Metadata *MDNodeMapper::map(const MDNode &N) {
843 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
844 assert(!(M.Flags & RF_NoModuleLevelChanges) &&
845 "MDNodeMapper::map assumes module-level changes");
846
847 // Require resolved nodes whenever metadata might be remapped.
848 assert(N.isResolved() && "Unexpected unresolved node");
849
850 Metadata *MappedN =
851 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
852 while (!DistinctWorklist.empty())
853 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
854 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old))
855 return *MappedOp;
856 return mapTopLevelUniquedNode(*cast<MDNode>(Old));
857 });
858 return MappedN;
859}
860
861Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
862 assert(FirstN.isUniqued() && "Expected uniqued node");
863
864 // Create a post-order traversal of uniqued nodes under FirstN.
865 UniquedGraph G;
866 if (!createPOT(G, FirstN)) {
867 // Return early if no nodes have changed.
868 for (const MDNode *N : G.POT)
869 M.mapToSelf(N);
870 return &const_cast<MDNode &>(FirstN);
871 }
872
873 // Update graph with all nodes that have changed.
874 G.propagateChanges();
875
876 // Map all the nodes in the graph.
877 mapNodesInPOT(G);
878
879 // Return the original node, remapped.
880 return *getMappedOp(&FirstN);
881}
882
883std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
884 // If the value already exists in the map, use it.
885 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD))
886 return *NewMD;
887
888 if (isa<MDString>(MD))
889 return const_cast<Metadata *>(MD);
890
891 // This is a module-level metadata. If nothing at the module level is
892 // changing, use an identity mapping.
893 if ((Flags & RF_NoModuleLevelChanges))
894 return const_cast<Metadata *>(MD);
895
896 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
897 // Don't memoize ConstantAsMetadata. Instead of lasting until the
898 // LLVMContext is destroyed, they can be deleted when the GlobalValue they
899 // reference is destructed. These aren't super common, so the extra
900 // indirection isn't that expensive.
901 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
902 }
903
904 // Map metadata from IdentityMD on first use. We need to add these nodes to
905 // the mapping as otherwise metadata nodes numbering gets messed up. This is
906 // still economical because the amount of data in IdentityMD may be a lot
907 // larger than what will actually get used.
908 if (IdentityMD && IdentityMD->contains(MD))
909 return getVM().MD()[MD] = TrackingMDRef(const_cast<Metadata *>(MD));
910
911 assert(isa<MDNode>(MD) && "Expected a metadata node");
912
913 return std::nullopt;
914}
915
916Metadata *Mapper::mapMetadata(const Metadata *MD) {
917 assert(MD && "Expected valid metadata");
918 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
919
920 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD))
921 return *NewMD;
922
923 return MDNodeMapper(*this).map(*cast<MDNode>(MD));
924}
925
926void Mapper::flush() {
927 // Flush out the worklist of global values.
928 while (!Worklist.empty()) {
929 WorklistEntry E = Worklist.pop_back_val();
930 CurrentMCID = E.MCID;
931 switch (E.Kind) {
932 case WorklistEntry::MapGlobalInit:
933 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
934 remapGlobalObjectMetadata(*E.Data.GVInit.GV);
935 break;
936 case WorklistEntry::MapAppendingVar: {
937 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
938 // mapAppendingVariable call can change AppendingInits if initalizer for
939 // the variable depends on another appending global, because of that inits
940 // need to be extracted and updated before the call.
942 drop_begin(AppendingInits, PrefixSize));
943 AppendingInits.resize(PrefixSize);
944 mapAppendingVariable(*E.Data.AppendingGV.GV,
945 E.Data.AppendingGV.InitPrefix,
946 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits));
947 break;
948 }
949 case WorklistEntry::MapAliasOrIFunc: {
950 GlobalValue *GV = E.Data.AliasOrIFunc.GV;
951 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target);
952 if (auto *GA = dyn_cast<GlobalAlias>(GV))
953 GA->setAliasee(Target);
954 else if (auto *GI = dyn_cast<GlobalIFunc>(GV))
955 GI->setResolver(Target);
956 else
957 llvm_unreachable("Not alias or ifunc");
958 break;
959 }
960 case WorklistEntry::RemapFunction:
961 remapFunction(*E.Data.RemapF);
962 break;
963 }
964 }
965 CurrentMCID = 0;
966
967 // Finish logic for block addresses now that all global values have been
968 // handled.
969 while (!DelayedBBs.empty()) {
970 DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
971 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
972 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
973 }
974}
975
976void Mapper::remapInstruction(Instruction *I) {
977 // Remap operands.
978 for (Use &Op : I->operands()) {
979 Value *V = mapValue(Op);
980 // If we aren't ignoring missing entries, assert that something happened.
981 if (V)
982 Op = V;
983 else
984 assert((Flags & RF_IgnoreMissingLocals) &&
985 "Referenced value not in value map!");
986 }
987
988 // Remap phi nodes' incoming blocks.
989 if (PHINode *PN = dyn_cast<PHINode>(I)) {
990 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
991 Value *V = mapValue(PN->getIncomingBlock(i));
992 // If we aren't ignoring missing entries, assert that something happened.
993 if (V)
994 PN->setIncomingBlock(i, cast<BasicBlock>(V));
995 else
996 assert((Flags & RF_IgnoreMissingLocals) &&
997 "Referenced block not in value map!");
998 }
999 }
1000
1001 // Remap attached metadata.
1003 I->getAllMetadata(MDs);
1004 for (const auto &MI : MDs) {
1005 MDNode *Old = MI.second;
1006 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
1007 if (New != Old)
1008 I->setMetadata(MI.first, New);
1009 }
1010
1011 if (!TypeMapper)
1012 return;
1013
1014 // If the instruction's type is being remapped, do so now.
1015 if (auto *CB = dyn_cast<CallBase>(I)) {
1017 FunctionType *FTy = CB->getFunctionType();
1018 Tys.reserve(FTy->getNumParams());
1019 for (Type *Ty : FTy->params())
1020 Tys.push_back(TypeMapper->remapType(Ty));
1021 CB->mutateFunctionType(FunctionType::get(
1022 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
1023
1024 LLVMContext &C = CB->getContext();
1025 AttributeList Attrs = CB->getAttributes();
1026 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
1027 for (int AttrIdx = Attribute::FirstTypeAttr;
1028 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
1029 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
1030 if (Type *Ty =
1031 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
1032 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
1033 TypeMapper->remapType(Ty));
1034 break;
1035 }
1036 }
1037 }
1038 CB->setAttributes(Attrs);
1039 return;
1040 }
1041 if (auto *AI = dyn_cast<AllocaInst>(I))
1042 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
1043 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
1044 GEP->setSourceElementType(
1045 TypeMapper->remapType(GEP->getSourceElementType()));
1046 GEP->setResultElementType(
1047 TypeMapper->remapType(GEP->getResultElementType()));
1048 }
1049 I->mutateType(TypeMapper->remapType(I->getType()));
1050}
1051
1052void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1054 GO.getAllMetadata(MDs);
1055 GO.clearMetadata();
1056 for (const auto &I : MDs)
1057 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
1058}
1059
1060void Mapper::remapFunction(Function &F) {
1061 // Remap the operands.
1062 for (Use &Op : F.operands())
1063 if (Op)
1064 Op = mapValue(Op);
1065
1066 // Remap the metadata attachments.
1067 remapGlobalObjectMetadata(F);
1068
1069 // Remap the argument types.
1070 if (TypeMapper)
1071 for (Argument &A : F.args())
1072 A.mutateType(TypeMapper->remapType(A.getType()));
1073
1074 // Remap the instructions.
1075 for (BasicBlock &BB : F) {
1076 for (Instruction &I : BB) {
1077 remapInstruction(&I);
1078 for (DbgRecord &DR : I.getDbgRecordRange())
1079 remapDbgRecord(DR);
1080 }
1081 }
1082}
1083
1084void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
1085 bool IsOldCtorDtor,
1086 ArrayRef<Constant *> NewMembers) {
1088 if (InitPrefix) {
1089 unsigned NumElements =
1090 cast<ArrayType>(InitPrefix->getType())->getNumElements();
1091 for (unsigned I = 0; I != NumElements; ++I)
1092 Elements.push_back(InitPrefix->getAggregateElement(I));
1093 }
1094
1095 PointerType *VoidPtrTy;
1096 Type *EltTy;
1097 if (IsOldCtorDtor) {
1098 // FIXME: This upgrade is done during linking to support the C API. See
1099 // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
1100 VoidPtrTy = PointerType::getUnqual(GV.getContext());
1101 auto &ST = *cast<StructType>(NewMembers.front()->getType());
1102 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
1103 EltTy = StructType::get(GV.getContext(), Tys, false);
1104 }
1105
1106 for (auto *V : NewMembers) {
1107 Constant *NewV;
1108 if (IsOldCtorDtor) {
1109 auto *S = cast<ConstantStruct>(V);
1110 auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
1111 auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
1112 Constant *Null = Constant::getNullValue(VoidPtrTy);
1113 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
1114 } else {
1115 NewV = cast_or_null<Constant>(mapValue(V));
1116 }
1117 Elements.push_back(NewV);
1118 }
1119
1120 GV.setInitializer(
1121 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements));
1122}
1123
1124void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1125 unsigned MCID) {
1126 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1127 assert(MCID < MCs.size() && "Invalid mapping context");
1128
1129 WorklistEntry WE;
1130 WE.Kind = WorklistEntry::MapGlobalInit;
1131 WE.MCID = MCID;
1132 WE.Data.GVInit.GV = &GV;
1133 WE.Data.GVInit.Init = &Init;
1134 Worklist.push_back(WE);
1135}
1136
1137void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1138 Constant *InitPrefix,
1139 bool IsOldCtorDtor,
1140 ArrayRef<Constant *> NewMembers,
1141 unsigned MCID) {
1142 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1143 assert(MCID < MCs.size() && "Invalid mapping context");
1144
1145 WorklistEntry WE;
1146 WE.Kind = WorklistEntry::MapAppendingVar;
1147 WE.MCID = MCID;
1148 WE.Data.AppendingGV.GV = &GV;
1149 WE.Data.AppendingGV.InitPrefix = InitPrefix;
1150 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1151 WE.AppendingGVNumNewMembers = NewMembers.size();
1152 Worklist.push_back(WE);
1153 AppendingInits.append(NewMembers.begin(), NewMembers.end());
1154}
1155
1156void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
1157 unsigned MCID) {
1158 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1159 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) &&
1160 "Should be alias or ifunc");
1161 assert(MCID < MCs.size() && "Invalid mapping context");
1162
1163 WorklistEntry WE;
1164 WE.Kind = WorklistEntry::MapAliasOrIFunc;
1165 WE.MCID = MCID;
1166 WE.Data.AliasOrIFunc.GV = &GV;
1167 WE.Data.AliasOrIFunc.Target = &Target;
1168 Worklist.push_back(WE);
1169}
1170
1171void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1172 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1173 assert(MCID < MCs.size() && "Invalid mapping context");
1174
1175 WorklistEntry WE;
1176 WE.Kind = WorklistEntry::RemapFunction;
1177 WE.MCID = MCID;
1178 WE.Data.RemapF = &F;
1179 Worklist.push_back(WE);
1180}
1181
1182void Mapper::addFlags(RemapFlags Flags) {
1183 assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1184 this->Flags = this->Flags | Flags;
1185}
1186
1187static Mapper *getAsMapper(void *pImpl) {
1188 return reinterpret_cast<Mapper *>(pImpl);
1189}
1190
1191namespace {
1192
1193class FlushingMapper {
1194 Mapper &M;
1195
1196public:
1197 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1198 assert(!M.hasWorkToDo() && "Expected to be flushed");
1199 }
1200
1201 ~FlushingMapper() { M.flush(); }
1202
1203 Mapper *operator->() const { return &M; }
1204};
1205
1206} // end anonymous namespace
1207
1209 ValueMapTypeRemapper *TypeMapper,
1210 ValueMaterializer *Materializer,
1211 const MetadataSetTy *IdentityMD)
1212 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer, IdentityMD)) {}
1213
1215
1216unsigned
1218 ValueMaterializer *Materializer) {
1219 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1220}
1221
1223 FlushingMapper(pImpl)->addFlags(Flags);
1224}
1225
1227 return FlushingMapper(pImpl)->mapValue(&V);
1228}
1229
1231 return cast_or_null<Constant>(mapValue(C));
1232}
1233
1235 return FlushingMapper(pImpl)->mapMetadata(&MD);
1236}
1237
1239 return cast_or_null<MDNode>(mapMetadata(N));
1240}
1241
1243 FlushingMapper(pImpl)->remapInstruction(&I);
1244}
1245
1247 FlushingMapper(pImpl)->remapDbgRecord(DR);
1248}
1249
1252 for (DbgRecord &DR : Range) {
1253 remapDbgRecord(M, DR);
1254 }
1255}
1256
1258 FlushingMapper(pImpl)->remapFunction(F);
1259}
1260
1262 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO);
1263}
1264
1266 Constant &Init,
1267 unsigned MCID) {
1268 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1269}
1270
1272 Constant *InitPrefix,
1273 bool IsOldCtorDtor,
1274 ArrayRef<Constant *> NewMembers,
1275 unsigned MCID) {
1276 getAsMapper(pImpl)->scheduleMapAppendingVariable(
1277 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1278}
1279
1281 unsigned MCID) {
1282 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID);
1283}
1284
1286 unsigned MCID) {
1287 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID);
1288}
1289
1291 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1292}
static unsigned getMappedOp(unsigned PseudoOp)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
Hexagon Common GEP
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
while(!ToSimplify.empty())
LoopAnalysisManager LAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1153
static Mapper * getAsMapper(void *pImpl)
static ConstantAsMetadata * wrapConstantAsMetadata(const ConstantAsMetadata &CMD, Value *MappedV)
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:171
iterator end() const
Definition: ArrayRef.h:157
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
iterator begin() const
Definition: ArrayRef.h:156
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
Definition: Attributes.h:86
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
The address of a basic block.
Definition: Constants.h:893
Function * getFunction() const
Definition: Constants.h:923
BasicBlock * getBasicBlock() const
Definition: Constants.h:924
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1897
static ConstantAggregateZero * get(Type *Ty)
Definition: Constants.cpp:1672
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1312
Constant * getValue() const
Definition: Metadata.h:540
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:1108
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2321
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1826
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1378
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1421
This is an important base class in LLVM.
Definition: Constant.h:42
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
static DIArgList * get(LLVMContext &Context, ArrayRef< ValueAsMetadata * > Args)
static DSOLocalEquivalent * get(GlobalValue *GV)
Return a DSOLocalEquivalent for the specified global value.
Definition: Constants.cpp:1970
This class represents an Operation in the Expression.
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
void setDebugLoc(DebugLoc Loc)
Record of a variable value-assignment, aka a non instruction representation of the dbg....
A debug info location.
Definition: DebugLoc.h:33
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
Definition: Metadata.cpp:1521
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1565
void clearMetadata()
Erase all metadata attached to this Value.
Definition: Metadata.cpp:1603
Type * getValueType() const
Definition: GlobalValue.h:297
void setInitializer(Constant *InitVal)
setInitializer - Sets the initializer for this global variable, removing any existing initializer if ...
Definition: Globals.cpp:492
static InlineAsm * get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack=false, AsmDialect asmDialect=AD_ATT, bool canThrow=false)
InlineAsm::get - Return the specified uniqued inline asm string.
Definition: InlineAsm.cpp:43
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Metadata node.
Definition: Metadata.h:1073
static std::enable_if_t< std::is_base_of< MDNode, T >::value, T * > replaceWithDistinct(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a distinct one.
Definition: Metadata.h:1315
bool isUniqued() const
Definition: Metadata.h:1255
static std::enable_if_t< std::is_base_of< MDNode, T >::value, T * > replaceWithUniqued(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a uniqued one.
Definition: Metadata.h:1305
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:895
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1506
static MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition: Metadata.cpp:103
Root of the metadata hierarchy.
Definition: Metadata.h:62
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
static NoCFIValue * get(GlobalValue *GV)
Return a NoCFIValue for the specified function.
Definition: Constants.cpp:2028
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Definition: DerivedTypes.h:686
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
Definition: Record.h:2148
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:458
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
void reserve(size_type N)
Definition: SmallVector.h:663
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void resize(size_type N)
Definition: SmallVector.h:638
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:406
Target - Wrapper for Target specific information.
Tracking metadata reference.
Definition: TrackingMDRef.h:25
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1859
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
static ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:501
static ConstantAsMetadata * getConstant(Value *C)
Definition: Metadata.h:476
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:43
virtual Type * remapType(Type *SrcTy)=0
The client should implement this method if they want to remap types while mapping values.
void remapDbgRecord(Module *M, DbgRecord &V)
void remapDbgRecordRange(Module *M, iterator_range< DbgRecordIterator > Range)
MDNode * mapMDNode(const MDNode &N)
Metadata * mapMetadata(const Metadata &MD)
void remapInstruction(Instruction &I)
void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MappingContextID=0)
void scheduleRemapFunction(Function &F, unsigned MappingContextID=0)
void scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, unsigned MappingContextID=0)
unsigned registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer=nullptr)
Register an alternate mapping context.
void remapFunction(Function &F)
Constant * mapConstant(const Constant &C)
ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataSetTy *IdentityMD=nullptr)
void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef< Constant * > NewMembers, unsigned MappingContextID=0)
void scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, unsigned MappingContextID=0)
void remapGlobalObjectMetadata(GlobalObject &GO)
Value * mapValue(const Value &V)
void addFlags(RemapFlags Flags)
Add to the current RemapFlags.
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:56
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:213
A range adaptor for a pair of iterators.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
Key
PAL metadata keys.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
ID ArrayRef< Type * > Tys
Definition: Intrinsics.h:102
@ CE
Windows NT (Windows on ARM)
NodeAddr< FuncNode * > Func
Definition: RDFGraph.h:393
const_iterator end(StringRef path LLVM_LIFETIME_BOUND)
Get end iterator over path.
Definition: Path.cpp:235
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void RemapFunction(Function &F, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataSetTy *IdentityMD=nullptr)
Remap the operands, metadata, arguments, and instructions of a function.
Definition: ValueMapper.h:316
RemapFlags
These are flags that the value mapping APIs allow.
Definition: ValueMapper.h:72
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:96
@ RF_NullMapMissingGlobalValues
Any global values not in value map are mapped to null instead of mapping to self.
Definition: ValueMapper.h:106
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:78
@ RF_ReuseAndMutateDistinctMDs
Instruct the remapper to reuse and mutate distinct metadata (remapping them in place) instead of clon...
Definition: ValueMapper.h:102
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
DWARFExpression::Operation Op
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
#define N
#define NC
Definition: regutils.h:42