Integrating Large Language Models with Graphical Session-Based Recommendation

本文介绍了一种名为LLMGR的框架,它结合大型语言模型(LLM)和图神经网络(GNN),以增强基于会话的推荐(SBR)系统。通过将LLM的自然语言理解和GNN的关系处理能力相结合,LLMGR能更好地理解用户会话中的项目,从而提高推荐性能。在多个真实世界数据集上的实验显示,LLMGR优于传统基线,证明了其在SBR任务中的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Integrating Large Language Models with Graphical Session-Based Recommendation》的翻译。

将大型语言模型与基于图会话的推荐集成

摘要

随着大型语言模型(LLM)的快速发展,在推荐系统中利用LLM的上下文理解能力进行了各种探索。虽然开创性的策略主要将传统的推荐任务转化为自然语言生成的挑战,但由于其特殊性,在基于会话的推荐(SBR)领域的探索相对较少。城市SBR主要由图神经网络主导,由于其能够捕捉相邻行为之间的隐式和显式关系,图神经网络已经取得了许多成功。图形的结构性质与自然语言的本质形成对比,对应LLM构成了一个重要的适应差距。在本文中,我们介绍了具有基于会话的图形推荐的大型语言模型,称为LLMGR,这是一个有效的框架,通过将LLM与用于SBR任务的图神经网络(GNN)和谐地集成来弥合上述差距。这种集成旨在利用LLM在自然语言理解方面的互补优势和GNN在关系数据处理方面的互补实力,从而形成一个更强大的基于会话的推荐系统,可以理解和推荐会话中的项目。此外,为了赋予LLM授权SBR任务的能力,我们为辅助和主指令调整任务设计了一系列提示。这些提示旨在帮助LLM理解图结构数据,并将文本信息与节点对齐,从而有效地翻译细微差别用户交互转换为LLM架构能够理解和利用的格式。在三个真实世界数据集上进行的大量实

已下架不支持订阅

### 可解释性AI中的基于一致性框架整合大语言模型的研究与实现 #### 背景介绍 近年来,随着大型语言模型(LLMs)的发展及其在各种领域中的广泛应用,其黑箱性质逐渐成为关注焦点。为了提高这些模型的透明性和可信度,研究人员提出了多种方法来增强它们的可解释性。其中,“基于一致性框架”的方法因其能够通过逻辑推理验证模型预测的一致性而受到广泛关注[^1]。 #### 基于一致性的框架概述 一致性框架的核心理念在于评估模型输出与其内部知识表示之间是否存在矛盾。具体而言,在医疗诊断系统开发中提到的一种策略是利用外部数据源或先验知识库作为参照物,从而验证模型推断过程的有效性。这种方法不仅适用于特定应用场景下的性能优化,还扩展到了更广泛的多模态人工智能历史重建等领域[^2]。 #### 大型语言模型的应用场景分析 当我们将这一概念应用于大型语言模型时,可以考虑以下几个方面: 1. **输入-输出一致性检测** 对于给定的任务,可以通过设计测试集或者合成样本的方式检查不同条件下模型行为是否保持稳定。例如,在自然语言处理任务中设置一系列具有相似语义结构但表达方式略有差异的问题组合,观察对应答案间关系如何变化。 2. **跨模态信息融合机制探索** 结合视觉、听觉等多种感官信号共同作用下产生的综合判断往往更加可靠准确。因此引入多媒体素材辅助训练有助于提升最终成果质量的同时也增加了系统的复杂程度以及对其管理维护的要求。 3. **伦理考量和技术挑战应对措施建议** 随着技术进步带来的便利同时也伴随着新的风险因素出现,比如隐私保护问题、偏见放大效应等等都需要引起足够的重视并采取相应手段加以解决。这包括但不限于制定严格的数据访问权限控制政策;定期审查算法公平性指标确保不会无意间强化某些负面刻板印象等方面的工作内容。 #### 实现案例分享 目前已有部分开源项目致力于此方向上的实践尝试,像Sotaro Kaneda在其GitHub仓库`MLCarbon`里就记录了一些初步实验结果可供参考学习[^3]。尽管如此,由于该课题本身仍处于快速发展阶段,所以未来还有很大改进空间等待进一步挖掘发现。 ```python # 示例代码片段展示了一个简单的函数用于计算两个字符串之间的编辑距离, # 这种基础操作可能是构建更大规模文本比较工具的一部分。 def levenshtein_distance(s1, s2): if len(s1) < len(s2): return levenshtein_distance(s2, s1) if len(s2) == 0: return len(s1) previous_row = range(len(s2) + 1) for i, c1 in enumerate(s1): current_row = [i + 1] for j, c2 in enumerate(s2): insertions = previous_row[j + 1] + 1 deletions = current_row[j] + 1 substitutions = previous_row[j] + (c1 != c2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1] print(levenshtein_distance("kitten", "sitting")) # 输出应为3 ``` 上述例子虽然简单,但它展示了如何量化两段文字间的差异程度——这是衡量一致性过程中可能需要用到的一个基本组件之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值