A Survey on Personalized Alignment—The Missing Piece for Large Language Models in Real-World

在这里插入图片描述

文章主要内容总结

本文系统探讨了大型语言模型(LLMs)在实际应用中的个性化对齐问题。当前LLMs通过监督微调(SFT)和人类反馈强化学习(RLHF)实现了与通用人类价值观(如帮助性、诚实性、无害性)的对齐,但在适应个体用户偏好方面存在显著不足。作者提出了一个统一的个性化对齐框架,包含以下三个核心组件:

  1. 偏好记忆管理

    • 管理用户显式(如直接反馈)和隐式(如行为数据、用户生成内容)的偏好信息。
    • 通过偏好推理将隐式信号转化为结构化的偏好空间。
  2. 个性化生成与奖励

    • 通过提示注入、编码嵌入、参数微调或代理工作流等方式,将用户偏好融入生成过程。
    • 结合通用价值观约束与个性化奖励模型,优化生成质量。
  3. 基于反馈的对齐

    • 利用用户反馈更新偏好记忆和生成策略,平衡训练时和推理
Sure! Here's an example of a 4-lane MIPI data alignment module written in Verilog: ```verilog module mipi_data_alignment ( input [31:0] data_in, input clk, input rst, output reg [31:0] data_out ); reg [31:0] shift_reg [0:3]; always @(posedge clk or posedge rst) begin if (rst) begin for (int i = 0; i < 4; i = i + 1) begin shift_reg[i] <= 32'b0; end end else begin for (int i = 0; i < 4; i = i + 1) begin shift_reg[i] <= {shift_reg[i][30:0], data_in[i*8 +: 8]}; end end end always @(posedge clk) begin if (rst) begin data_out <= 32'b0; end else begin for (int i = 0; i < 4; i = i + 1) begin data_out[i*8 +: 8] <= shift_reg[i][31:24]; end end end endmodule ``` In this module, `data_in` is a 32-bit input representing the MIPI data for the four lanes, `clk` is the clock signal, `rst` is the reset signal, and `data_out` is the aligned output data for the four lanes. The array `shift_reg[0:3]` consists of four 32-bit shift registers, each corresponding to one lane. On each rising edge of the clock (`clk`), the data for each lane is shifted left by eight bits, and the new input data for each lane is concatenated to the rightmost eight bits of the corresponding shift register. This aligns the incoming MIPI data stream for each lane. The aligned output data for each lane is updated on each rising edge of the clock based on the current values of the shift registers. Remember to customize this code according to your specific requirements and the MIPI protocol specifications you are working with.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值