
- Lua Tutorial
- Lua - Home
- Lua Basics
- Lua - Overview
- Lua - Environment
- Lua - Basic Syntax
- Lua - Comments
- Lua - Print Hello World
- Lua - Variables
- Lua - Data Types
- Lua - Operators
- Lua - Loops
- Lua - Generic For
- Lua - Decision Making
- Lua - Date and Time
- Lua Functions
- Lua - Functions
- Lua - Multiple Results
- Lua - Named Arguments
- Lua - Default/Optional Arguments
- Lua - Closures
- Lua - Uses of Closures
- Lua - Local Functions
- Lua - Anonymous Functions
- Lua - Functions in Table
- Lua - Proper Tail Calls
- Lua Strings
- Lua - Strings
- Lua - String Concatenation
- Lua - Loop Through String
- Lua - String to Int
- Lua - Split String
- Lua - Check String is NULL
- Lua Arrays
- Lua - Arrays
- Lua - Multi-dimensional Arrays
- Lua - Array Length
- Lua - Iterating Over Arrays
- Lua - Slicing Arrays
- Lua - Sorting Arrays
- Lua - Merging Arrays
- Lua - Sparse Arrays
- Lua - Searching Arrays
- Lua - Resizing Arrays
- Lua - Array to String Conversion
- Lua - Array as Stack
- Lua - Array as Queue
- Lua - Array with Metatables
- Lua - Immutable Arrays
- Lua - Shuffling Arrays
- Lua Iterators
- Lua - Iterators
- Lua - Stateless Iterators
- Lua - Stateful Iterators
- Lua - Built-in Iterators
- Lua - Custom Iterators
- Lua - Iterator Closures
- Lua - Infinite Iterators
- Lua - File Iterators
- Lua - Table Iterators
- Lua - Numeric Iterators
- Lua - Reverse Iterators
- Lua - Filter Iterators
- Lua - Range Iterators
- Lua - Chaining Iterators
- Lua Tables
- Lua - Tables
- Lua - Tables as Arrays
- Lua - Tables as Dictionaries
- Lua - Tables as Sets
- Lua - Table Length
- Lua - Table Iteration
- Lua - Table Constructors
- Lua - Loop through Table
- Lua - Merge Tables
- Lua - Nested Tables
- Lua - Accessing Table Fields
- Lua - Copy Table by Value
- Lua - Get Entries from Table
- Lua - Table Metatables
- Lua - Tables as Objects
- Lua - Table Inheritance
- Lua - Table Cloning
- Lua - Table Sorting
- Lua - Table Searching
- Lua - Table Serialization
- Lua - Weak Tables
- Lua - Table Memory Management
- Lua - Tables as Stacks
- Lua - Tables as Queues
- Lua - Sparse Tables
- Lua Lists
- Lua - Lists
- Lua - Inserting Elements into Lists
- Lua - Removing Elements from Lists
- Lua - Iterating Over Lists
- Lua - Reverse Iterating Over Lists
- Lua - Accessing List Elements
- Lua - Modifying List Elements
- Lua - List Length
- Lua - Concatenate Lists
- Lua - Slicing Lists
- Lua - Sorting Lists
- Lua - Reversing Lists
- Lua - Searching in Lists
- Lua - Shuffling List
- Lua - Multi-dimensional Lists
- Lua - Sparse Lists
- Lua - Lists as Stacks
- Lua - Lists as Queues
- Lua - Functional Operations on Lists
- Lua - Immutable Lists
- Lua - List Serialization
- Lua - Metatables with Lists
- Lua Modules
- Lua - Modules
- Lua - Returning Functions from Modules
- Lua - Returning Functions Table from Modules
- Lua - Module Scope
- Lua - SubModule
- Lua - Module Caching
- Lua - Custom Module Loaders
- Lua - Namespaces
- Lua - Singleton Modules
- Lua - Sharing State Between Modules
- Lua - Module Versioning
- Lua Metatables
- Lua - Metatables
- Lua - Chaining Metatables
- Lua - Proxy Tables with Metatables
- Lua - Use Cases for Proxy Table
- Lua - Delegation and Tracing via Proxy Tables
- Lua - Metatables vs Metamethods
- Lua - Fallback Mechanisms in Metatables
- Lua - Fallback Cases for Indexing Metamethods
- Lua - Fallback Cases for Arithmetic and Comparison Metamethods
- Lua - Fallback Cases for Other Metamethods
- Lua - Customizing Behavior with Metatables
- Lua - Controlling Table Access
- Lua - Overloading Operators
- Lua - Customizing Comparisons
- Lua - Making a Table Callable
- Lua - Customizing String Representation
- Lua - Controlling Metatable Access
- Lua Coroutines
- Lua - Coroutines
- Lua - Coroutine Lifecycle
- Lua - Communication Between Coroutines
- Lua - Coroutines vs Threads
- Lua - Chaining Coroutines
- Lua - Chaining Coroutines With Scheduler
- Lua - Chaining Coroutines Using Queues
- Lua - Coroutine Control Flow
- Lua - Nested Coroutines
- Lua File Handling
- Lua - File I/O
- Lua - Opening Files
- Lua - Modes for File Access
- Lua - Reading Files
- Lua - Writing Files
- Lua - Closing Files
- Lua - Renaming Files
- Lua - Deleting Files
- Lua - File Buffers and Flushing
- Lua - Reading Files Line by Line
- Lua - Binary File Handling
- Lua - File Positioning
- Lua - Appending to Files
- Lua - Error Handling in File Operations
- Lua - Checking if File exists
- Lua - Checking if File is Readable
- Lua - Checking if File is Writable
- Lua - Checking if File is ReadOnly
- Lua - File Descriptors
- Lua - Creating Temporary Files
- Lua - File Iterators
- Lua - Working with Large Files
- Lua Advanced
- Lua - Error Handling
- Lua - Debugging
- Lua - Garbage Collection
- Lua - Object Oriented
- Lua - Web Programming
- Lua - Database Access
- Lua - Game Programing
- Sorting Algorithms
- Lua - Bubble Sort
- Lua - Insertion Sort
- Lua - Selection Sort
- Lua - Merge Sort
- Lua - Quick Sort
- Searching Algorithms
- Lua - Linear Search
- Lua - Binary Search
- Lua - Jump Search
- Lua - Interpolation Search
- Regular Expression
- Lua - Pattern Matching
- Lua - string.find() method
- Lua - string.gmatch() method
- Lua - string.gsub() method
- Lua Useful Resources
- Lua - Quick Guide
- Lua - Useful Resources
- Lua - Discussion
Lua - Coroutine Control Flow
Lua Coroutines provides a unique way to control their flow by allowing to pause and resume their execution during application run in a non-preemptive manner. We can simulate concurrency, and can structure complex workflows. Following are the methods which governs control flow of coroutines in Lua.
coroutine.create(f) function
A coroutine is defined using coroutine.create(f) function. It acts as a starting point for coroutines. f is the implementation of the coroutine.
coroutine.create(f) creates the coroutine, but it is not started.
This function returns an object of type Thread representing the coroutine.
coroutine.resume(co,...) function
A coroutine co is started or resumed using coroutine.resume(co,...) function. If resume is called first time, thread is started earlier created using coroutine.resume(co,...) accepts arguments which eventually are passed to coroutine function.
coroutine.resume(co,...) returns status as either true if call is successful otherwise false.
If status is true, resume() function returns the value passed to yield() function. Otherwise, it will return an error message.
coroutine.yield(...) function
Current coroutine is paused or suspended using coroutine.yield(...) function. This function returns arguments passed to coroutine.yield(...) function to the caller function which resume it using coroutine.resume(co,...) function.
coroutine.resume(co,...) returns status as either true if call is successful otherwise false.
A coroutine state as value of local variables and point of execution are preserved.
A coroutine co remains suspended until resumed by coroutine.resume(co,...) function.
coroutine.status(co) function
coroutine.status(co) returns the current state of the coroutine as a string. Following are possible states of a coroutine.
running signifies the coroutine is currently in running state.
suspended signifies that the coroutine is either created or is in suspended by yield() call.
normal signifies the coroutine is active but not in running state.
dead signifies the coroutine has finished its execution or faced error.
coroutine.wrap(f) function
coroutine.wrap(f) returns a wrapper over coroutine and is used to provide high level scenarios like creating a iterator.
It takes f as function and returns a new function. Whenver this function is called, coroutine is resumed and returns the value yielded by the coroutine.
In case no value is yielded, wrapper function returns nothing. In case of error in coroutine execution, wrapper function receives the error.
Example - Using states of Coroutine
main.lua
function coroutine1() print("Coroutine started") local value1 = coroutine.yield(10) print("Coroutine resumed, received:", value1) local value2 = coroutine.yield(value1 * 2) print("Coroutine finished") local value2 = coroutine.yield(value2 + 5) return value2 + 5 end co = coroutine.create(coroutine1) status, yield1 = coroutine.resume(co) -- prints Main thread: true 10 print("Main thread:", status, yield1) status, yield2 = coroutine.resume(co, yield1) -- Main thread: true 20 print("Main thread:", status, yield2) status, result = coroutine.resume(co, yield2) -- Main thread: true 25 print("Main thread:", status, result) -- Coroutine status: suspended print("Coroutine status:", coroutine.status(co)) -- Output: dead
Output
When we run the above code, we will get the following output−
Coroutine started Main thread: true 10 Coroutine resumed, received: 10 Main thread: true 20 Coroutine finished Main thread: true 25 Coroutine status: suspended