
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - Class Precedence
Class precedence is a crucial concept of CLOS, Common LISP Object System. It refers to ordering of a class and its subclasses. Class precdence is very important in case of inheritance especially multiple inheritance.
Class precedence defines the inheritance hiearchy in a linear fashion even in case of complex multiple inheritance. In multiple inheritance, a class can inherit from multiple classes. In case a method with same name is getting inherited then to solve such ambiguity, class precedence plays an important role in resolving these conflicting by providing a clear precedence order.
How Class Precedence Works?
A class precedence list is prepared in order superclasses are defined in defclass form.
When a geric function is called, CLOS uses the class precedence list to determine which method to execute.
A most specific method is called on the basis of the class of the object used.
Example - primary Function
Following is the complete example of a primary function.
main.lisp
; define a class A (defclass A () ()) ; define a class B (defclass B () ()) ; define a class C inheriting A and B (defclass C (A B) ()) ; define a class D inheriting B and A (defclass D (B A) ()) ; A T (print (class-precedence-list (find-class 'A))) (terpri) ; B T (print (class-precedence-list (find-class 'B))) (terpri) ; C A B T (print (class-precedence-list (find-class 'C))) (terpri) ; D B A T (print (class-precedence-list (find-class 'D)))
Output
When you execute the code, it returns the following result −
(#<STANDARD-CLASS A> #<STANDARD-CLASS STANDARD-OBJECT> #<BUILT-IN-CLASS T>) (#<STANDARD-CLASS B> #<STANDARD-CLASS STANDARD-OBJECT> #<BUILT-IN-CLASS T>) (#<STANDARD-CLASS C> #<STANDARD-CLASS A> #<STANDARD-CLASS B> #<STANDARD-CLASS STANDARD-OBJECT> #<BUILT-IN-CLASS T>) (#<STANDARD-CLASS D> #<STANDARD-CLASS B> #<STANDARD-CLASS A> #<STANDARD-CLASS STANDARD-OBJECT> #<BUILT-IN-CLASS T>)
Explanation
(defclass A () ()) (defclass B () ()) − Two base classes A and B are defined. As there is no superclasses, precedence list of A and B is simply themselves followed by T.
(defclass C (A B) ()) − C class inherits A and B, so precedence list maintains the order in which C inherits A and B. And precedence list of C comes as C A B followed by T.
(defclass D (B A) ()) − D class inherits B and A, as precedence list maintains the order in which D inherits B and A. And precedence list of D comes as D B A followed by T.
Key Considerations
Class precedence is dependent on the order in which superclasses are used in defclass.
CLOS ensures that in class precedence, a class appears before its superclasses.
CLOS ensures that there is no cyclic loop in class precedence list.
Class T is always present at the end of the precedence list.
When a class inherits multiple classes, class precedence list prefers local order of superclasses ensure that entire list is consistent.