
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - Structure Options
LISP provides multiple options while creating a structure using defstruct to control the structure's behavior and characteristics. In this chapter, we're discussing various options available to customize structures to tailor our needs.
:constructor
constructor function is used to create instance of a structure. Using :constructor option, we can control the generation and behavior of a constructor. We can choose a different name, provide arguments which a constructor to accept and so on.
Example - Define Constructor with arguments
main.lisp
; define a structure point with constructor name as make-point ; accepting two arguments (defstruct (point (:constructor make-point (x y))) x y) ; create a point instance (setq point1 (make-point 10 20)) ; get and print the value of x and y (print(point-x point1)) (print(point-y point1))
Output
When you execute the code, it returns the following result −
10 20
:predicate
predicate function is used to check if a structure is of given type. Using :predicate option, we can define a custom name for the predicate function.
Example - Define Predicate with arguments
main.lisp
; define a structure point with predicate function (defstruct (point (:predicate pointp))) ; create a point instance (setq point1 (make-point)) ; check if point1 is instance of point struture (print(pointp point1))
Output
When you execute the code, it returns the following result −
T
:copier
copier function is used to create a copy of structure. Using :copier option, we can define a custom name for the copier function.
Example - Define Copier with arguments
main.lisp
; define a structure point with copier function (defstruct (point (:copier copy-point))) ; create a point instance (setq point1 (make-point)) ; create a copy of point1 (setq point2 (copy-point point1)) ; check if point2 is instance of point struture (print(point-p point2))
Output
When you execute the code, it returns the following result −
T
:print-function
print function is used to print a structure. Using :print-function option, we can define a custom printer function for the structure.
Example - Define print-function
main.lisp
(defstruct (point (:constructor make-point (x y) :print-function print-point)) x y) (defun print-point (p) (format t "#POINT (~a, ~a)" (point-x p) (point-y p))) ; create a point instance (setq point1 (make-point 10 20)) ; print point 1 (print-point point1)
Output
When you execute the code, it returns the following result −
#POINT (10, 20)
:include
include option allows to inherit slots of another struture.
Example - Inheritance using include option
main.lisp
; define a structure shape (defstruct shape color) ; define a structure circle with slots of shape (defstruct (circle (:include shape)) radius) ; create and assign a structure to circle ( setq circle1 (make-circle :radius 10 :color "red")) ; print circle structure (write circle1)
Output
When you execute the code, it returns the following result −
#S(CIRCLE :COLOR "red" :RADIUS 10)
:type
type option allows to specify underlying data type of the structure, for example, vector.
Example - Setting Type
main.lisp
; define a point of type vector (defstruct (point (:type vector)) x y) ; create a point instance (setq point1 (make-point)) ; print type of point (write (type-of point1))
Output
When you execute the code, it returns the following result −
(SIMPLE-VECTOR 2)
These options provides developers a fine-grained control on how a LISP struture is created and used.